永康供应高强镁合金材料供应高强镁合金材料
-
¥118.00
近日,中铝轻研在镁合金领域取得突破性进展,解决了镁合金板材在变形过程中的组织调控问题,工业化实现镁合金的超细晶化,成功制备出兼顾强度与塑性的高强韧镁合金,让以镁代钢成为可能。
该镁合金的抗拉强度超过400MPa,屈服强度高达360MPa,同时延伸率达到了13.9%。
高强镁合金材料是支撑航空航天、新一代武器装备、高速列车以及新能源汽车等装备不断升级发展的基础材料,具有广阔的应用前景。随着我国装备对轻质镁合金的化、构件大型化需求日益,强度不足严重制约镁合金材料在上述领域的应用以及终端产品竞争力。
现有镁合金材料抗强度大多在250-350MPa之间,通过大塑性变形技术(SPD)可以细化合金晶粒,但在断裂韧性以及性能稳定性等方面还有明显不足。稀土元素可以显著改善镁合金的铸造性能、力学性能、耐腐蚀性能以及耐高温性能,而高强度的镁-稀土合金的成本较高,无法大规模民用。
传统镁合金的力学性能较差,如何低成本地制备出高强韧兼备的变形镁合金材料,是本领域的瓶颈问题。
镁(Mg)合金密度低,强重比高,具有良好的导电性和导热性,具有优良的电磁屏蔽效果。因此,镁合金是汽车、航空航天、电子等领域有前途的结构材料之一。镁合金具有诸多优点,但其强度较低,缺乏有效析出相,室温成形性较差,限制了镁合金作为结构材料的应用。
众所周知,凝固过程中形成的第二相,不仅对铸态合金的组织和力学性能有显著影响,而且对其进一步的加工性能(挤压)和终性能(热处理)也有显著影响。因此,改变镁合金中第二相的形态、分布和尺寸是至关重要的。目前关于第二相粒子调控的研究较多,包括TiC、AlN、Mg2Si、TiB2等。如Xiao等报道了Sb改性Mg2Si/AZ91复合材料中Mg2Si的改性机理。Li等人研究了加入Eu后Al-Si合金晶Si的改性。超声处理、快速凝固、机械加工、热处理等多项研究和技术取得了显著进展。上述方法,均能有效调控第二相颗粒,但复杂、成本高、产业化难度。Xue等人指出了La掺杂AZ80-Ce镁合金中Al-RE管状相的形成机理。通过掺杂相邻的稀土元素La,发现了一种调节Al-Ce相形貌的新方法,La原子可以取代Al-Ce相中的Ce原子,增加其生长表面,改变其生长速率。本研究为第二相的调控提供了新的思路,为镁合金的强化增韧提供了理论依据和参考。
研究者通过掺杂相邻RE元素调节RE第二相的新思路,通过添加不同含量的Dy元素对MgSnGd相进行了修饰。结果表明,Dy能有效改善MgSnGd晶粒的形貌和分布,减小α-Mg基体的尺寸,从而开发出综合力学性能优良的新型Mg-8Zn-1Mn-3Sn-Gd-Dy (ZMT813-Gd-Dy)合金。据目前所知,还没有关于Dy改性MgSnGd颗粒的报道。研究者通过扫描电镜(SEM)、电子背散射衍射(EBSD)、场发射电子探针(EPMA)、透射电镜(TEM)和力学试验,系统研究了MgSnGd第二相调控机制及其对挤压态合金动态再结晶(DRX)行为的影响。此外,研究者还详细讨论了MgSnGd相的Dy改性机理及其对铸态和挤压态ZMT813-1.2Gd合金组织和力学性能的影响。
镁合金可以通过压铸、挤压、锻造等多种成型方法,实现复杂形状零部件的大规模生产。镁合金在高温下依然具有良好的塑性和抗变形性,有利于热加工和成形。
科学家和工程师通过添加合金元素或进行表面处理等方式,有效改善了镁合金的腐蚀性能,使其适用于更广泛的应用场景。
镁合金是一种环保材料,它可以与环境中的氧气和水进行反应,生成氧化镁和氢气,不会产生对环境有害的废弃物。镁合金具有很好的可回收性,对于节约资源和保护环境具有积极意义。
它作为轻量高强的未来材料之选,具有诸多优势,包括高强度与轻量化优势、良好的加工性能和成型性,以及其耐腐蚀性与环保特点。
这些优势使得镁合金在航空航天、汽车工业和医疗设备等领域拥有广泛的应用前景,同时也为材料科学领域的研究者带来了新的挑战和机遇。