100KBBHMDRN14M14M125M1144派克液压缸
-
≥ 1台¥1150.00
100KBBHMDRN14M14M125M1144
100KBBHMDRN14M14M125M1144
25BBHMIRN14M100A11144
25CBBHMIRN14M100A11144
25KBBHMIRN14M100A11144
25BBHMIRN14M100A11144
25HHHMIRN14M100A11144
25CHHHMIRN14M100A11144
25KHHHMIRN14M100A11144
25HHHMIRN14M100A11144
25CHMIRN14M100A11144
25CCHMIRN14M100A11144
25KCHMIRN14M100A11144
25CHMIRN14M100A11144
25SBDHMIRN14M100A11144
25CSBDHMIRN14M100A11144
25KSBDHMIRN14M100A11144
25SBDHMIRN14M100A11144
25DDHMIRN14M100A11144
25CDDHMIRN14M100A11144
25KDDHMIRN14M100A11144
25DDHMIRN14M100A11144
25TBHMIRN14M100A11144
25CTBHMIRN14M100A11144
25KTBHMIRN14M100A11144
25TBHMIRN14M100A11144
25TCHMIRN14M100A11144
25CTCHMIRN14M100A11144
25KTCHMIRN14M100A11144
25TCHMIRN14M100A11144
25TDHMIRN14M100A11144
25CTDHMIRN14M100A11144
25KTDHMIRN14M100A11144
25TDHMIRN14M100A11144
25BHMIRN14M100A11144
25CBHMIRN14M100A11144
25KBHMIRN14M100A11144
25BHMIRN14M100A11144
25BBHMIRN14M100A11144
25CBBHMIRN14M100A11144
25KBBHMIRN14M100A11144
25BBHMIRN14M100A11144
25DHMIRN14M100A11144
25CDHMIRN14M100A11144
25KDHMIRN14M100A11144
25DHMIRN14M100A11144
25DBHMIRN14M100A11144
25CDBHMIRN14M100A11144
25KDBHMIRN14M100A11144
25DBHMIRN14M100A11144
25BBHMDRN14M100A11144
25CBBHMDRN14M100A11144
25KBBHMDRN14M100A11144
25BBHMDRN14M100A11144
25HHHMDRN14M100A11144
25CHHHMDRN14M100A11144
25KHHHMDRN14M100A11144
25HHHMDRN14M100A11144
25CHMDRN14M100A11144
25CCHMDRN14M100A11144
25KCHMDRN14M100A11144
25CHMDRN14M100A11144
25SBDHMDRN14M100A11144
25CSBDHMDRN14M100A11144
25KSBDHMDRN14M100A11144
25SBDHMDRN14M100A11144
25DDHMDRN14M100A11144
25CDDHMDRN14M100A11144
25KDDHMDRN14M100A11144
25DDHMDRN14M100A11144
25TBHMDRN14M100A11144
25CTBHMDRN14M100A11144
25KTBHMDRN14M100A11144
25TBHMDRN14M100A11144
100KBBHMDRN14M14M125M1144
分功率变量系统中两个液压泵各有一个立的恒功率调节器,每个液压泵流量只受液压泵所在回路负载压力的影响,如图1a所示,图1b为双泵特性曲线。分功率系统只是简单地将两个恒功率液压泵组合在一起,每一个液压泵多吸收柴油机50%的额定功率。而且只有当每台液压泵都在压力调节范围P0≤P≤Pmax内工作时,才能利用全部功率。由于每个回路中负载压力一般是不相等的,因此液压泵的输出流量不相等。这种系统的优点在于:两个液压泵的流量可以根据各自回路的负载单变化,对负载的适应性优于全功率系统。其主要缺点在于:由于每个液压泵多只能吸收柴油机50%的功率,而当其中一个液压泵工作于起调压力之下时,另外一个液压泵却不能吸收柴油机空余出来的功率,使柴油机功率得不到充分利用,从而限制了挖掘机的工作能力,因此这种系统在国外大、中型挖掘机上基本被淘汰。
图1 分功率变量系统
全功率控制
图2 全功率变量系统
在全功率变量系统中,液压泵的功率调节有两种形式。一种是两个液压泵共用一个功率调节器,如Rexroth的A8VO泵(工作原理如图2a所示),经压力平衡器将两液压泵的工作压力PA1、PA2之和的一半作用到调节器上实现两泵共同变量;另一种是两个液压泵各配置一个调节器,如川崎的K3V泵(工作原理如图所示2b所示),两个调节器由液压联动,两个液压泵的压力油各通入本泵调节器的环行腔和另一个液压泵调节器的小端面腔,实现液压联动,因小端面腔面积与环行腔面积相等,各液压泵压力的变化对调节器的推动效应相等,使两个液压泵的斜盘摆角相等,输出流量相等,可使两个规格相同且又同时动作的执行机构保持同步关系。决定液压泵流量变化的压力是两个液压泵工作压力之和P=P1+P2,只要满足2P0≤P≤2Pmax,两个液压泵功率总和始终保持恒定,不超过柴油机的功率。但每个液压泵的功率与其工作压力成正比,其中一个液压泵有时可能在超负荷下运行,系统特性如图3所示。其优点在于:,能够在一定条件下充分利用柴油机功率;第二,两个液压泵各自都能够吸收柴油机的全部功率,派克液压缸,武汉现货提高了工作装置的作业能力;第三,结构简单。由于以上特点,全功率变量泵液压系统在挖掘机上曾经得到大量应用。上述全功率变量系统,其性能还不够理想,其单泵特性曲线如图4所示。因液压泵的工作点总是沿着abcde折线自动调节,实际是在大功率、大流量和大压力三种极端工况下工作。挖掘机工作时并非时刻都需大功率、大流量和大压力。如果柴油机处于空载运转,或者作业负载较轻以及工作装置处于强阻力微动时,若按上述特性运行必然造成能量浪费,而又无法通过人为控制改变液压泵的运行状况,因此全功率系统不可避免地存在功率损失。目前开中心系统不是单采用全功率控制功能,而是与其他控制结合起来,如负流量控制、正流量控制、功率变化控制等。大多数国产挖掘机的液压系统采用全功率控制与负流量控制的组合,对液压泵的输出功率进行控制,以减少极端工况下的功率损失。
100KBBHMDRN14M14M125M1144