保定挤压镁合金镁合金挤压铸造
-
¥118.00
若压铸工艺不当,镁合金铸件中就会产生相应的缺陷甚至出现废品。按造成缺陷的原因,可将其分为两类:凝固缺陷,如气孔、缩松、冷纹等;机械问题引发的缺陷,如扭曲、变形、缺“肉”等。其中,缺“肉”和冷纹是合金压铸件中常见的缺陷形式。除此之外,还可能产生其他缺陷,其产生原因及避免措施如下。
发生缺“肉”或模具型腔未填满的原因:压射速度不够;模具或熔体温度低;熔体污染,如附有过多的氧化物;润滑剂过量;浇口不合适;模具排气不充分;冷室压铸时压射力不合适。
模具或熔体温度低,流向相反的熔体相遇时会发生冷流或冷喷。总排气面积增至浇口面积50%以上时,会减少冷喷频率。
吸气或析H2会产生气孔,调整浇道、浇口、排气和润滑系统可以大限度地减少这类缺陷的产生。
限制熔体进料量,铸件局部热点处会形成缩孔或空洞。
不良浇口、尖角或润滑过量会造成溅洒和扰动,可使铸件表面形成波纹和漩涡。
熔体凝固时可产生热裂纹,模具的约束会引起应力集中、尖角和铸件脱模延迟,都将增大热裂倾向。
铸件脱模时的收缩应力会引起铸件变形、扭曲和断裂。
在镁合金铸件生产中,每一种缺陷都是由多个因素引起的。因此,对每一种缺陷产生的原因与采取的预防措施应进行具体分析。
从金属变形的的主变形方式可知,轧制的主变形方式是双向延伸、一向压缩的,因此,轧制不利于充分发挥镁合金的塑性能力,镁合金轧制板带材轧制工艺并不是一种主要的工艺,在镁及镁合金的半成品产量中,平轧材也不是多的。在书面材料中,不宜把“轧制”写成“压延”,因为在国标GB/8005.1中并没有“压延”一词,只有“轧制”一词;同时,在商务印书馆出版的第3版《新华大字典》中也无“压延”一词,只有“轧制”。
镁及镁合金晶体结构为密集六方晶格,塑形变形能力不强,所以轧制板材时多采用塑性较高的AZ31和M1A合金。铝合金及铜合金晶体都是面心立方晶格,有很高的塑性,可轧成很薄的箔材。板材可按其厚度分为厚板与薄板,对铜合金及铝合金来说,厚板是指厚度>6mm的板材,现在航空航天工业用的铝合金厚板厚度已达250mm;≤6mm的板材称为薄板。对镁合金板材来说,一般把原度11mm~70mm的称为厚板,厚度≤10mm的称为薄板。
由于镁合金的变形能力有限,为使锭坯获得大的变形量和减少裂纹产生,大都进行热轧,热轧温度300℃~450℃,可根据合金选择温度,热车道次压下率为10%~30%,铝合金的热轧道次压下率可达50%。在镁合金热轧时,若轧件温度降到315℃,则需要重新加热,以热轧的进行。
挤压工艺主要的部分是挤压温度,它与合金种类和挤压材形状有关,一般为295℃~455℃,对镁及镁合金的挤压变形特性影响很大,可以通过调节挤压温度来满足挤压比要求,镁合金的挤压比(断面减缩率)通常保持在10∶1~100∶1,采用预挤压坯锭挤压时,可以采用更大的挤压比。同时,挤压镁合金时会产生大量热能,采取适当措施散发这部分热量,否则,被挤件温度有可能会超过固相线温度,形成热裂纹。
挤压结束后,先取出模具,并从锭坯上切下成品件,再取出锭坯余料,余料可以循环使用。如果立即装上新锭坯,并与锭坯余料焊合后,可以连续挤压,预留纵向槽,以便新旧锭坯卷入的气体排出,可采用铸造、机械加工和挤压法加工纵向槽。用挤压工艺可以生产双金属复合材料。
为了使挤压材具有弥散分布的细小的显微组织和较高的力学性能,须将挤压材进行在线淬火,即在挤压机上向出模的高温挤压材吹强气流或水。应注意的是,冷却水不得与热模接触,否则模型会开裂。挤压材料人工时效后,力学性能显著上升,它们的典型性能见表。粉末挤压ZK60A合金有很高的抗压强度,因其晶粒极小。
ZK60、WE43、WE54合金的热处理状态为T5(人工时效)或T6(固溶+人工时效)。T5和T6状态的ZK系列镁合金挤压材,不但有各向同性的强度性能,而且塑性也不低。热处理对WE系镁合金挤压材的室温力学性能影响不大,但能较明显地提高其高温性能稳定性。AZ61及AZ80镁合金也可以时效强化,但在T5、T6处理后,强度性能仅略有提高,可是塑性却明显下降。一般情况下,ZK型镁合金具有良好的强度与塑性匹配,无需进行热处理。
ZK60A合金挤压材
ZK60A镁合金是一种不含Al的Mg-Zn系合金,含Zn4.8-6.2、Zr 0.45,共余为Mg,Zr的含量一般为0.5%。F及T5状态挤压材的室温平均弹性模量44.8GPa。室温抗拉强度/伸长率:F材料的340MPa/14%,T5材料的305MPa/11%;室温屈服强度:F材料的360MPa、T5材料的305MPa。
ZK60A合金挤压材纵向试样回转梁(R=-1)轴向负载(R=0.25)的室温疲劳断裂试验结果见图1-图4。
ZK60A合金锻件
ZK60A-T5合金锻件的回转和弯曲梁(R=-1)疲劳强度见图5及图6,纵向试样,带切口,Kt=2,经机加工和抛光,试样取自车轮轮缘。
弹性模量室温平均值44.8MPa、室温抗拉强度/伸长率305MPa/16%、室温屈服强度205MPa的ZK60A的切线和轴向轮缘回转和弯曲梁试样的室温疲劳强度见下表,试样经抛光。
AZ31B-F合金挤压材的室温平均弹性模量44.8 GPa,抗拉强度260 MPa,伸长率15%,屈服强度200 MPa。室温下光滑试样于干燥大气中、水中、含冷凝水空气中和其它物质中进行。
轴向负载(R=0.25)疲劳断裂试验时,其疲劳性能与疲劳寿命见表。
美国衣阿华大学的斯蒂芬斯(R. I. Stephens)和施拉德(C.D. Schrader)用 12.7 mm 厚的AZ31B- H24镁合金测试了它在室温试验室条件的疲劳裂纹成长特性(见下图)。试样的平均室温弹性模量44.8 GPa,抗拉强度250 MPa,伸长率21 %,屈服强度150 MPa,负载条件R=0.1、0.4、0.7,试样取向T-L、厚12.7 mm,频率5Hz-50 Hz。
在镁合金的应用产品中,压力加工产品、铸造产品以及非结构应用呈三足鼎立之势,自镁实现工业化应用以来,镁在冶金工业(配制铝合金、钢脱硫、球墨铸铁等)中的应用占50%-65%,加工镁及镁合金半成品(板、带、管、棒、型材)材料的占比很小,仅为1%-1.6%,挤压材(管、棒、型材)占的比例更小,只有0.4%-0.8%。因此,每年须进行表面处理的挤压镁材量不多。挤压镁材的表面处理方法有氧化着色、阳极氧化、电镀等。
挤压镁材的氧化着色
挤压镁材氧化着色工艺流程及参数见表1,其预处理(脱脂、水洗、酸洗、光亮蚀洗)及氧化处理后的水洗等处理与前面介绍的相同。
槽液配制与管理
根据槽的容积计算所需的化工产品,加水至1/2容积,将化工产品一一加入槽中,对除油槽与氧化槽加热、开风机、搅拌,而对酸洗槽与光洗槽在室温下开风机、搅拌。搅均后加水至规定容积,再搅拌均匀,取样分析,试氧化,合格后方可正式生产。在使用期间应定期对槽液成分进行化学分析。
氧化膜缺陷修补
挤压材表面上的氧化膜应均匀、牢固,若检查不合格,可作如下修补:
清除不合格膜层,重新处理。
局部清除有缺陷的氧化膜,再用补色液着色,常用的补色液见表2。用汽油或工业酒精擦净油污后,用玻璃砂布轻轻打磨,露出干净的镁,以压缩空气吹净粉尘,用浸以酒精液的纱布擦净表面,晾干后用缠锦纱或棉花的玻璃棒或木棒,蘸上氧化液在表面上反复涂擦约35s,晾干后即可。