南宁高纯氧化铝杂质分析成分检测中心
-
¥200.00
由于承担与镀膜设备配合、承受高压水冷等作用,需要具备的尺寸精度与机械精度,加工难度较高。尤其是带内循环水路的背板。由于材质的特殊性,水路的密闭焊接非常困难。需要用到特种焊接工艺,l金属化:靶坯与背板在绑定之前,为增强靶材和靶材与焊朴的全属润湿性能,需要进行焊合面的预处理,使之表面锭上一层过渡层,l绑定:大部分靶材由于材料的物理或者化学性能受限,不可直接装机镀膜使用。需要采用金属焊料将靶坯与背板相互焊合连接,并且表面有效粘结率需要达到大于95%的大面积焊合,整个过程需要在高温和高压下进行,以铝靶材制造过程为例。
如烧结气氛、烧结压力等,从而制备成高密度的靶坯,l塑性加工:金属坯锭需经过大幅度的塑性变形。以获得足够的长宽厚度尺寸,并使得内部晶粒进行足够的拉伸变形。从而在内部产生足够多的位错,l热处理:金属坯锭在经过大幅度的塑性变形后。根据不同的材料的特性选择热处理工艺,从而使金属材料发生重结晶去除内应力,l超声探伤:靶坯加工完后需要采用波进行检查材料内部是否有缺陷。靶坯与背板绑定完成后,需要采用水浸式超声波扫描仪进行粘结层的检测,看粘结面积是否达标。l机械加工:靶坯需要进行精密的机械成型加工,用于与靶坯复合使用的背板。
而未米的018um}艺甚至013m工艺。所需要的靶材纯度将要求达到5甚至6N以上,铜与铝相比较,铜具有更高的抗电迁移能力及更低的电阻率,能够满足,导体工艺在025um以下的亚微米布线的需要但却带米了其他的问题:铜与有机介质材料的附着强度低.并且容易发生反应,导致在使用过程中芯片的铜互连线被腐蚀而断路,为了解决以上这些问题。需要在铜与介质层之间设置阻挡层,阻挡层材料一般采用高熔点、高电阻率的金属及其化合物。因此要求阻挡层厚度小于50nm。与铜及介质材料的附着性能良好。铜互连和铝互连的阻挡层材料是不同的.需要研制新的靶材材料。
光纤是光通讯科技与产业的基础,高纯四氯化锗是高品级石英系光纤不可缺少的关键原料。四氯化锗作为石英系光纤中的主要掺杂剂,其用途是提高光纤的折射指数,降低光损耗。进而提高光纤的传输距离,锗在光纤中的分布和含量决定了光纤的关键性能指标。所以其本身的质量直接影响光纤的性能和质量,四氯化锗可由氯化氢来提纯,这个过程可以去除砷和其他类似的杂质,在-30℃到30℃的温度范围内用无水氯气来提纯。但这个方法不能除去含氢杂质,在1000℃高温下四氯化锗中的氢原子被氯气氯化成氯化氢,从而去除含氢杂质。采用沸石来除去气体(包括四氯化锗气体)中的水分子。
铋系超导材料近年来一直是国际上研究的热点。铋锶钙铜超导线目前已经成为四大超导材料系列之一,3、核燃料冷却剂:核反应堆离不开铋,铋吸收X射线的能力与铅大体相当。但是吸收热中子截面小而熔点较低,因此LMFR反应堆都选用液态高纯铋作为反应堆燃料U235和U233的载体和冷却剂。铋冷却剂还用于核潜艇。性能优于氯化钠,铋还可以作为防护装置用于核裂变装置。4、替代铅:铅的应用也比较广,像铅黄铜、颜料、铅弹等等。都含铅,但是由于铅的毒性,会严重桅人体神经系统。国际上一直在寻求铅的替代品,铋由于和铅在许多性能方面都很接近。而且是对人体无害的“绿色金属”。
镓是一种低熔点高沸点的稀散金属。有“电子工业脊梁”的美誉。镓的化合物是的半导体材料。被广泛应用到光电子工业和微波通信工业。用于制造微波通讯与微波集成、红外光学与红外探测器件、集成电路、发光二极管等。例如我们在电脑上看到的红光和绿光就是由磷化镓二极管发出的。目前,半导体行业金属镓消费量约占总消费量的80%—85%,镓也被应用到太阳能电池的制造中,如砷化镓三五族太阳能电池,该电池具有良好的耐热、耐辐射等特性。其光电转换率非常高。初因为生产、使用成本都非常高,常常被应用在航天和领域,但近几年随着科技的发展。砷化镓太阳能电池的生产和使用成本都在降低。