铸造是镁合金的主要成形方法,包括砂型铸造、金属型铸造、熔模铸造、消失模铸造和压铸等在内的多种铸造方法均可用于镁合金成形。目前,90%以上的镁合金产品是压铸成形的。
压铸是镁合金主要、应用广泛的成形工艺。镁合金有优良的压铸工艺性能:镁合金液粘度低,流动性好,易于充满复杂型腔。用镁合金可以很容易地生产壁厚1.0mm~2.0mm的压铸件,现在小壁厚可达0.6mm。镁压铸件的铸造斜度为1.5,而铝合金是2~3度。镁压铸件的尺寸精度比铝压铸件高50%。镁合金的熔点和结晶潜热都低于铝合金,压铸过程中对模具冲蚀比铝合金小,且不易粘型,其模具寿命可比铝合金件长2—4倍。镁合金件压铸周期比铝件短,因而生产效率可比铝合金提高25%。镁合金铸件的加工性能优于铝合金铸件,镁合金件的切削速度可比铝合金件提高50%,加工耗能比铝合金件低50%。生产经验表明由于生产,热室压铸的镁合金小件的总成本低于冷室压铸的铝合金同样件。
AZ系列合金AZ91具有良好的铸造性能和高的屈服强度,其压铸件广泛应用于汽车座椅、变速箱外壳等多种形式部件。AM系列合金AM50、AM60具有较高的延伸率和韧性,用于抗冲击载荷、安全性高的场合如车轮、车门等。AS系列的镁合金AS41、AS21和AE系列的AFA2是20世纪70年代开发的耐热压铸镁合金。
镁合金压铸中广泛采用冷、热室压铸方法。一般薄壁铸件采用热室压铸机,厚壁铸件采用冷室压铸机。镁合金热室压铸机是目前国外使用数量多的镁合金压铸设备,具有生产,浇注温度低,注型寿命长,易实现熔体保护等特点。主要缺点是设备成本和维修费用较高。
镁合金压铸时,合金液冲填压型时的高速湍流运动,使腔内气体无法排出,会导致组织疏松,甚至铸件表面鼓包或变形。压铸工艺参数如压力、速度、熔体温度、模具温度等对铸件性能都有显着影响。许多新压铸方法,包括真空压铸、充氧压铸和挤压铸造等一定程度上克服了以上缺点,减少了铸件组织疏松和气孔等缺陷,提高了铸件致密度。美国俄亥俄州精密成型公司C.Rozak介绍了镁合金的金属压缩成型技术(MCF)在整个铸件表面加压的成型方法,在压力下凝固,改善了微观组织,减少了晶粒尺寸和孔隙率,铸件致密均匀,可用于生产性能要求高、形状复杂的铸件。
熔模铸造是目前国际上较为的铸造技术之一。熔模铸造从原理上讲适合于制备小体积高精密的铸件。目前它已用于生产铝合金甚至镍基超合金。在镁合金铸件的发展历程中,有些工件结构复杂,一些部位壁厚非常薄,并且对表面粗糙度和尺寸公差要求严格,则可以采用熔模铸造来生产。
采用熔模铸造法生产铸件时具有不需取模、无型芯和无分型面等特点,因而其铸件的尺寸精度和表面粗糙度接近于熔模精铸件。此外,熔模铸造为铸件结构设计提供了充分的自由度,原来多个零件组装的构件,可以通过分片制型后粘合成一体实现整体浇注,因此可以经济地生产许多复杂零件。但是,熔模铸造的设备投入和单位铸造成本高,工件尺寸有限。此外,镁与熔模铸型材料和粘结材料用氧化物陶瓷之间存在高活性反应,从而大大地限制了其应用。生产镁合金薄壁件时需要预热铸型以便填充薄壁部位,然而预热温度和浇注温度过高将促进镁合金与铸型间的反应。有研究表明采用低的铸型预热温度时,ZrO2是一种很有前景的铸型材料。
半固态成形技术,是在金属凝固过程中,将结晶过程控制在固—液两相共存温度,并通过剧烈搅拌破碎枝晶组织,从而获得一种金属母液中悬浮一定固相成分的固—液?昆合浆料,再采用压铸、模锻等成形加工工艺进行的金属成形技术。半固态加工,是一种新型、的工艺方法,与传统液态铸造成形相比,具有成形温度低(镁合金可降低100℃左右),延长模具的寿命,改善生产条件和环境,细化晶粒,减少气孔、缩孔,提高组织致密性,提高铸件质量等优点,被认为是21世纪具有发展前景的精密成形技术之一。根据工艺流程的不同,半固态成形通常分为流变铸造(Rheocasting)和触变铸造(Thixocasting)两类:流变铸造是对冷却过程中的金属液进行搅动,将形成的固相枝晶破碎,形成一定固相分数的半固态金属浆料,然后将浆料注入压铸机或挤压机内成形(俗称“一步法”);而触变铸造是先由连铸等方法制得具有半固态金属组织的锭坯,然后切成所需长度,用二次加热装置再加热到半固态状态,后移送至压铸机等再压铸或挤压成形(俗称“两步法”)。
半固态成形过程一般包括非枝晶组织的制备、二次加热和半固态成形3个步骤。制备非枝晶组织的坯料是半固态成形的前提,机械搅拌法是早采用的方法,其设备构造简单,但工艺参数不易控制,很难产品质量的一致性。目前工业化生产中,应用为广泛的方法有:电磁搅拌法、应变诱发熔化激活法(SIMA)和半固态等温热处理法(SSIT)以及化学晶粒细化法等。
3.1电磁搅拌法
利用电磁感应在凝固的金属液中产生感应电流,感应电流在外加磁场的作用下促使金属固液浆料激烈地搅动,使传统的枝晶组织转变为非枝晶组织。一般用于生产直径不大于150mm的棒坯。该方法在很大程度上克服了机械搅拌的缺点,可实现连铸,生产,是目前工业化生产中应用为广泛的一种方法。
3.2应变诱发熔化激活法(SIMA)
预先连续铸造出晶粒细小的合金锭,再将合金铸锭进行足够的预变形,然后加热到半固态。在加热过程中,先发生预变形,然后部分熔化,使初生相转变成颗粒状,形成半固态合金材料。此方法对制备较高熔点的非枝晶组织合金具有特的性,但只能制备直径小于60mm的坯料。
3.3半固态等温热处理法
在合金熔融状态时加人变质元素,进行常规铸造,然后把锭坯重新加热到固液两相区进行保温处理(半固态等温热处理),终获得具有触变性的非枝晶组织。主要工艺参数有添量元素的种类、加入量、半固态等温温度和保温时间等。
3.4化学晶粒细化法
是近几年开发的新方法。通过添加晶粒细化剂或变质剂,增加外来晶粒数量或改变结晶方式来细化晶粒组织,使生产的锭坯适合于半固态铸造。据报道,挪威NorskHydro公司已经通过化学晶粒细化法与特殊的凝固条件结合制备了镁合金AZ91的细晶粒铸锭。
半固态触变成形之前,先要进行局部重熔(二次加热)。应根据加工零件大小分割具有非枝晶组织的坯料,然后将其加热到半固态温度后再进行成形加工。其目的一是为了获得不同工艺所需的固相体积分数,二是将有些工艺(电磁搅拌,化学晶粒细化法等)获得的细小枝晶碎片逐渐长大,并转化成球状结构,从而为触变成形创造有利条件。