杨浦供应碳化硅肖特基二极管现货供应
-
面议
SiC PiN 的击穿电压很高,开关速度很快,重量很轻,并且体积很小,它在 3KV以上的整流器应用领域更加具有优势。2000年Cree公司研制出19.5 KV的台面PiN二极管,同一时期日本的 Sugawara 研究室也研究出了 12 KV 的台面 PiN 二极管。2005 年 Cree 公司报道了 10 KV、3.75 V、50 A 的 SiC PiN 二极管,其 10 KV/20 A PiN二极管系列的合格率已经达到 40%。
SiC MOSFET 的比导通电阻很低,工作频率很高,在高温下能够稳定的工作,它在功率器件领域很有应用前景。目前国际上报道的几种结构:UMOS、VDMOS、LDMOS、UMOS ACCUFET,以及 SIAFET 等。2008 年报道的双 RESURF 结构LDMOS,具有 1550 V 阻断电压.
SBD 在导通过程中没有额外载流子的注入和储存,因而反向恢复电流小,关断过程很快,开关损耗小。传统的硅肖特基二极管,由于所有金属与硅的功函数差都不很大,硅的肖特基势垒较低,硅 SBD 的反向漏电流偏大,阻断电压较低,只能用于一二百伏的低电压场合且不适合在 150 ℃以上工作。然而,碳化硅 SBD弥补了硅 SBD 的不足,许多金属,例如镍、金、钯、钛、钴等,都可以与碳化硅形成肖特基势垒高度 1 eV 以上的肖特基接触。据报道,Au/4H-SiC 接触的势垒高度可达到 1.73 eV,Ti/4H-SiC 接触的势垒比较低,但高也可以达到 1.1 eV。6H-SiC与各种金属接触之间的肖特基势垒高度变化比较宽,低只有 0.5 eV,高可达1.7 eV。于是,SBD 成为人们开发碳化硅电力电子器件关注的对象。它是高压快速与低功率损耗、耐高温相结合的理想器件。目前国际上相继研制成功水平较高的多种类的碳化硅器件。
金属与 N 型 4H-SiC 半导体体内含有大量的导电载流子。金属与 4H-SiC 半导体材料的接触仅有原子大小的数量级间距时,4H-SiC 半导体的费米能级大于金属的费米能级。此时 N 型 4H-SiC 半导体内部的电子浓度大于金属内部的电子浓度,两者接触后,导电载流子会从 N 型 4H-SiC 半导体迁移到金属内部,从而使 4H-SiC 带正电荷,而金属带负电荷。电子从 4H-SiC 向金属迁移,在金属与 4H-SiC 半导体的界面处形成空间电荷区和自建电场,并且耗尽区只落在 N 型 4H-SiC 半导体一侧,在此范围内的电阻较大,一般称作“阻挡层”。自建电场方向由 N 型 4H-SiC 内部指向金属,因为热电子发射引起的自建场增大,导致载流子的扩散运动与反向的漂移运动达到一个静态平衡,在金属与4H-SiC 交界面处形成一个表面势垒,称作肖特基势垒。4H-SiC 肖特基二极管就是依据这种原理制成的。
碳化硅作为一种宽禁带半导体材料,比传统的硅基器件具有更的性能。碳化硅的宽禁带(3.26eV)、高临界场(3×106V/cm)和高导热系数(49W/mK)使功率半导体器件效率更高,运行速度更快,能够有效降低产品成本、体积及重量。
碳化硅肖特基二极管的开启导通电压比硅快速恢复二极管较低,如果要降低VF值,需要减薄肖特基势垒的高度,但这会使器件反向偏压时的漏电流增大。碳化硅肖特基二极管的温度特性与硅快速恢复二极管不同,当温度升高时导通阻抗会增加,VF值也上升,这样器件发热不易发生热失控,更适合并联使用。