安庆挤压镁合金价格镁合金挤压铸造
-
¥118.00
压铸件表面总会或多或少地存在着种种缺陷,在出模后进行修整,除去多余的金属(如小块金属)、熔渣、漏道结块、溢出物、排气孔和飞边,修整可与简单的机械加工,如钻孔等一同进行。修整模通常用的是简单的开闭模,但有时也要用较为复杂的模,这取决于产品结构及其对精度的要求。修整模的尺寸精度决定了成品的质量与尺寸。
镁合金工件大都是近净成形的,尺寸也相当,修整后没有必要进行机械加工,有时为了提高表面品质,可进行振动或喷丸处理。而需要二次机加工处理的,通常都是近净成形、偏差严格和重复性良好的工件。
镁合金的抗蚀性低,因此,压铸件应进行化学防腐蚀处理和表面喷涂处理。防蚀处理在铬酸盐、磷酸盐钝化剂中进行钝化和阳极氧化处理,生成的氧化膜不但能提高镁合金的抗蚀性,而且能提高基底和喷涂层的粘结力。
对压铸件进行喷涂和喷丸处理,以提高表面质量,常用的涂料为:环氧树脂、乙烯树脂、聚氨酯等。此外,为了获得光亮均匀的表面,可进行陶瓷振动抛光处理,削除残余飞边和尖角,还可以进行研磨、抛光和其他研磨处理。
在喷丸处理镁合金压铸件时,应注意附着于工件上的降低抗蚀性的杂质微粒,好用铝丸、玻璃球和Al2O3粒子作喷丸介质,不得采用含有Fe、Cu或Ni的粒子作为喷丸,钢丸也不可用,且镁合金工件不能使用其他金属用过的喷丸进行处理。
安全工作
在镁合金压铸车间,要将安全工作放在。由于镁及镁合金的化学性质极为活泼,在生产时极易氧化、燃烧,甚至爆炸,采取对应的安全防范措施,可分为以下几方面:
锭的存放
镁及镁合金锭应储于室内,室内温度波动不可过大,不可与水汽直接接触,不可与易燃物品存于同一库内。镁燃烧,不可用水熄灭,否则不但会加速火势,还可能发生爆炸。
泄漏
在熔炼镁及镁合金时,熔体在运动剧烈或与水汽反应时易发生溅洒,因此,工作人员应穿戴防护衣服、鞋、帽、眼镜和面罩。熔炼前,锭块预热到大于150℃,熔炼工具须预热并保持干燥,浸入熔体宜缓慢,使其温度均匀升高,好不使用中空工具,以免带入水汽,引发爆炸。每个炉子、压射缸体和压型下方都应放置安全容器,收集溢出物。如果是镁及镁合金粉末自燃,不要快速移开安全容器。此外,洒落在混凝土地板上的熔体会与地面上的水汽发生剧烈反应。
镁反应
液态镁或镁合金可与氧化铁发生镁热反应,宜尽量减少坩埚壁及其他与熔体接触的钢件上形成碎屑和尘渣。
灭火
若发生火灾,应立即采用灭火剂覆盖燃烧表面,阻止其接触空气中的氧。按灭火递减顺序,可采用的灭火剂有:干燥的镁及镁合金的低熔点盐熔剂、干燥的无铸铁氧化物碎片、干砂以及适合灭火的D型灭火器。高压D型灭火器易导致火灾蔓延,只有在万不得已的情况下才采用。在镁及镁合金火灾中,不得使用水、泡沫、SO2、CO2和CCl4灭火。清理镁合金压铸件时,采用湿法处理以免粉尘飞扬;机加时应采用切削液,以降低加工区内温度。
从金属变形的的主变形方式可知,轧制的主变形方式是双向延伸、一向压缩的,因此,轧制不利于充分发挥镁合金的塑性能力,镁合金轧制板带材轧制工艺并不是一种主要的工艺,在镁及镁合金的半成品产量中,平轧材也不是多的。在书面材料中,不宜把“轧制”写成“压延”,因为在国标GB/8005.1中并没有“压延”一词,只有“轧制”一词;同时,在商务印书馆出版的第3版《新华大字典》中也无“压延”一词,只有“轧制”。
镁及镁合金晶体结构为密集六方晶格,塑形变形能力不强,所以轧制板材时多采用塑性较高的AZ31和M1A合金。铝合金及铜合金晶体都是面心立方晶格,有很高的塑性,可轧成很薄的箔材。板材可按其厚度分为厚板与薄板,对铜合金及铝合金来说,厚板是指厚度>6mm的板材,现在航空航天工业用的铝合金厚板厚度已达250mm;≤6mm的板材称为薄板。对镁合金板材来说,一般把原度11mm~70mm的称为厚板,厚度≤10mm的称为薄板。
由于镁合金的变形能力有限,为使锭坯获得大的变形量和减少裂纹产生,大都进行热轧,热轧温度300℃~450℃,可根据合金选择温度,热车道次压下率为10%~30%,铝合金的热轧道次压下率可达50%。在镁合金热轧时,若轧件温度降到315℃,则需要重新加热,以热轧的进行。
AZ31B-F合金挤压材的室温平均弹性模量44.8 GPa,抗拉强度260 MPa,伸长率15%,屈服强度200 MPa。室温下光滑试样于干燥大气中、水中、含冷凝水空气中和其它物质中进行。
轴向负载(R=0.25)疲劳断裂试验时,其疲劳性能与疲劳寿命见表。
美国衣阿华大学的斯蒂芬斯(R. I. Stephens)和施拉德(C.D. Schrader)用 12.7 mm 厚的AZ31B- H24镁合金测试了它在室温试验室条件的疲劳裂纹成长特性(见下图)。试样的平均室温弹性模量44.8 GPa,抗拉强度250 MPa,伸长率21 %,屈服强度150 MPa,负载条件R=0.1、0.4、0.7,试样取向T-L、厚12.7 mm,频率5Hz-50 Hz。
目前镁合金制造工艺技术能够有效的实现利用镁合金制造集成性能较高的车辆结构构件,一方面,镁合金具有良好的铸造性,加工条件较为简答,加工工艺简单,且加工有效性较高,不易产生废品;另一方面,镁合金较高的阻尼系数,能够增添汽车结构的抗震性,十分符合汽车工业制造对于材料的多项功能的追求目标。目前,镁合金在车辆结构构件的制造中广泛应用,例如在车辆的传动系统中,在离合器外壳、齿轮箱外壳、离变速箱外壳等零件的铸造方面就大量的使用了镁合金。在车体结构中,车门内衬、仪表板、车灯外壳、引擎盖、车身骨架、底盘系统转向架等也大量使用了镁合金压铸产品。许多国外发达国家对于镁合金的应用程度要远远国内汽车制造业,例如品牌兰博基尼、保时捷等都采用了镁合金减重设计,其车辆的相关性能都得到了很好的提升。但由于国内基于汽车安全性的考虑,对于镁合金材料的应用情况较少,仍多用铝合金的形式来对汽车重量进行控制。
汽车产业中镁合金用量较多的国家和地区主要是北美、欧洲、日本和韩国,1991年汽车工业中镁合金的用量仅为2.4万吨,到1997年则增至6.4 万吨,目前这些国家和地区汽车工业对镁合金的需求已达到每年40万吨。欧洲正在使用和研制的镁合金汽车零部件已超过60种,单车镁合金用量9.3公斤~20.3公斤;北美正在使用和研制的镁合金汽车零部件已超过100 种,单车镁合金用量5.8公斤~26.3公斤;我国汽车镁合金产业的总体技术水平不高,在汽车镁合金部件设计、制造加工等方面还有较大差距,平均单车用镁量不足1公斤。经过近几年的发展,已有20余种汽车零部件可以采用镁合金生产。
我国在汽车轻量化方面起步较晚,早将镁合金应用到汽车上的企业是上汽集团。上世纪90年代,在桑塔纳轿车上采用镁合金变速箱壳体、壳盖和离合器外壳,单车用镁合金共约8.5kg。一汽集团开发了抗蠕变镁合金,用于制造高温负载条件下的汽车动力系统部件,同时顺利研发出气缸盖罩盖等镁合金压铸件。同时,东风汽车公司、长安汽车集团也参与到镁合金零部件的生产之中,尤其需要指出的是长安集团生产的“长安之星”微型车上实现了单车用镁8kg的水平,达到了目前的国际水平。在镁合金工艺方面,镁合金汽车轮毂成型技术无疑是一大亮点。
在国家研发计划的支持下,在与东风汽车股份有限公司合作中,上海交大正在针对进行有关汽车用减震台和副车架结构设计,旨在早日实现镁合金在减震塔和副车架两类大型复杂薄壁部件的成型技术与应用上的突破。
目前,汽车工业平均用镁量在10 公斤以内。从2000年开始,各国和研发机构投入大量的资源进行镁合金的研发和产品的推广,特别是我国作为镁合金资源的大国,一直希望将镁合金在汽车工业中的用量进一步提高。但是,车用镁合金的用量并没有出现预期的大幅增长,主要的镁合号还是以AZ91D和AM50为主,主要的镁合金产品以方向盘骨架、仪表盘骨架、座椅骨架等内饰部件。限制镁合金大规模应用的一个主要原因还是由镁合金特性决定的,镁合金的耐腐蚀性能差,特别是电偶腐蚀是困扰镁合金在非内饰承载部件系统中应用的大阻力。
汽车轻量化和部件集成化的发展趋势,能够发挥镁合金材料流动性好、易成形大型复杂结构件的优势,将促使镁合金的新的大规模应用,例如:车门内板和行李箱后盖内板,采用压铸镁合金可以实现优轻量化和结构优化的效果。目前,我国具有多的镁合金矿产和冶炼资源,也具有大吨位压铸装备的下游生产企业,在该领域我国已经形成了全球为完整的产业链,能够实现从原镁到镁合金压铸件的全流程生产和制造。
镁合金转向管柱支架
现在在一款新能源车型的转向系统的开发中,引用了以镁合金为材料设计成型的转向支架和导向筒。由于镁合金的刚度,不会在安装后随车身支架的变形而产生变形,全面转向系统在整车碰撞过程中转向管柱可以按照设计的行程和吸能曲线完成整个动态溃缩过程,提供整车碰撞的安全性,并且大大提高了这个转向系统的刚度和频率,而且做到了轻量化设计,其质量较之常规车型原件减轻了5%以上。
镁合金仪表板骨架
常规车型的仪表板骨架更多是采用钢件焊接制成,为了满足汽车轻量化这一要求,需要在原本功能的基础上,确保装配面与孔的部位不改变,所以,将仪表板骨架零部件替换为镁合金。镁合金仪表板骨架制作时主要应用挤压、弯曲这两种工艺,所有镁合金件之间以氢弧焊进行连接。因为,镁合金与钢这两种材料接触之后会被腐蚀,所以仪表板骨架和车身、仪表板等零部件进行连接,建议采用钢质渗铝螺栓作为连接件。经过实践得知,轻量化镁合金仪表板骨架的质量是1.957kg,相比常规车型所采用的原钢件质量减轻了62.9%。