镁及其合金具有许多优良的物理和机械性能,具有较高的比强度和比刚度、易于切削加工、易于铸造、减震性好、能承受较大的冲击震动负荷、导电导热性好、磁屏蔽性能优良,是一种理想的现代结构材料,现已广泛应用于汽车、机械制造、航空航天、电子、通讯、军事、光学仪器和计算机制造等领域.为使镁合金应用于不同的场合,经常需要改变其表面状态以提高耐蚀性、耐磨性、可焊性、装饰性等性能。目前有许多工艺可在镁及镁合金表面上形成涂覆层,包括电镀、化学镀、转化膜,阳极氧化、氢化膜、有机涂层、气相沉积层等。其中为简单有效的方法就是通过电化学方法在基体上镀一层所需性能的金属或合金,即电镀与化学镀。本文对这两种处理方法在镁及镁合金上的应用所面临的问题、工艺流程、各种前处理方法、常用镀层及发展现状作简要概述。
镁上电镀及化学镀面临的问题镁是一种难于直接进行电镀或化学镀的金属,即使在大气环境下,镁合金表面也会迅速形成一层惰性的氧化膜,影响与镀层的结合强度,在进行电镀或化学镀时除去这层氧化膜。由于氧化膜生成速度较快,所以我们寻找一种适当的前处理方法,以在镁合金表面上形成一层既能防止氧化膜生成,又能在电镀或化学镀时易于除去的膜层。镁合金具有较高的化学反应活性,使得我们在电镀或化学镀时,镀液中金属阳离子的还原应发生,因为镁会与镀液中的阳离子迅速发生置换反应形成疏松的置换层,影响镀层的结合力。同时镁与大多数酸反应剧烈,在酸性介质中溶解迅速。因此,我们对镁合金进行电镀或化学镀处理时应尽量采用中性或碱性镀液,这样不仅可以减少对镁合金基体的浸蚀,也可以延长镀液的使用寿命。
浸锌基于浸锌已发明了许多前处理工艺,主要有Dow工艺、Norsk2Hydro工艺及WCM工艺。各种方法的处理过程大致如下:Dow工艺:除油阳极清洗酸蚀酸活化浸锌镀铜Norsk2Hydro工艺:除油酸蚀碱处理浸锌镀铜WCM工艺:除油酸蚀氟化物活化浸锌镀铜Dow工艺发展早,但得到的浸锌层不均匀、结合力差。改进的Dow工艺在酸活化后加入了碱活化步骤,在AZ31、AZ91镁合金上得到的Ni2Au合金镀层结合力良好,前处理时间也明显缩短。Norsk2Hydro工艺同Dow工艺相比,在结合力、耐蚀性、装饰性方面都有所提高,AZ61镁合金经此前处理后得到的Cu/Ni/Cr多层镀层达到了室外应用的标准。Dennis等人的研究表明,经Dow工艺和Norsk2Hydro工艺处理得到的浸锌层多孔,热循环性能不好。
因此,有人采用电镀锌之后焦磷酸盐电镀铜来代替氰化镀,声称获得的锌层厚度达0.6μm,适用于大多数镁合金,随后进行电镀或化学镀,可获得结合力良好的镀层,电镀锌及浸锌可同时进行也可分开进行,步骤如下:除油碱洗酸洗活化浸锌电镀锌预镀铜另一种前处理方法在镀铜时采用含有硅酸盐的镀液,对于形状复杂的镁合金也可获得均匀的镀层,耐蚀性、可焊性、导电性、结合力等性能均良好,前处理后可以电镀或化学镀各种金属。电镀锌后增加电镀锡步骤可以提高镀层的耐磨性能。直接化学镀镍对于AZ91铸造镁合金进行浸锌处理时相当困难,为了解决这个难题,Skata等人发明了一种新的前处理方法,直接在镁合金表面化学镀镍,得到的镀层均匀、结合力良好,处理流程如下:清洗除油碱蚀酸活化碱活化碱性化学预镀镍酸性化学镀镍该方法的缺点是采用酸性化学镀镍溶液,一旦底层存在孔隙,会导致基体镁的点腐蚀。英国PMD公司开发出了一种更为简单有效的处理方法,获得的化学镀镍层中磷的质量分数为4%~5%,过程如下:前处理碱洗酸蚀氟化物活化化学镀镍酸蚀、碱蚀、活化及化学镀对结合力均会产生很大影响。浸蚀、活化不充分将导致镀层结合力不好。氟化物活化可以用HF或NH4HF2,用HF活化会产生很宽的电化学窗,而NH4HF2活化后电化学窗很窄(pH值5.8~6.0,温度75~77℃).酸腐蚀采用铬酸时会严重腐蚀镁基体并产生还原的铬层,但随后的氟化物活化可以去除铬层,并可以通过控制镁合金表面的钝化来控制镍沉积速度。对于MA28镁合金,有人研究了氟化物钝化对化学镀镍的影响,镀液中含有氟化物,作用是在化学镀过程中抑制镁合金基体的腐蚀,得到的镀层结合力好,但镀液使用寿命很短,工业化生产无法接受,加入络合剂氨基乙酸可以起到稳定镀液的作用。
钢中添加镁可以细化夹杂物,并对氧化物、硫化物进行有效变质,反应产物不易聚合成大的簇团。但金属镁熔点、沸点低,加入钢水后迅速气化,易导致钢水喷溅事故。国内曾有个别企业尝试过向钢液中直接加入镁合金,但因为喷溅严重而放弃。山钢集团莱芜钢铁集团有限公司炼钢厂“120t转炉→LF/RH→4号CC”生产线主要生产别管线钢、船板钢、压力容器钢和高层建筑结构钢,精炼结束后一般采用钙处理,钢中检测到的夹杂物尺寸偏大。
东北大学的学者以热力学计算为基础,在120t钢包内进行了镁处理工业试验。结果表明采用缓释含镁包芯线技术可以实现镁合金的平稳喂入。检测到钢中w(T.Mg)=0.0010%~0.0016%。喂线过程中无钢水增氮趋势,T.O含量降低显着$降低幅度约50%,钢水洁净度明显提高。镁处理后,SPHC钢中夹杂物由氧化铝转变为镁铝尖晶石或纯的氧化镁,尺寸从3~5μm降至1~2μm,夹杂物中镁含量与镁合金喂入量呈较好的对应关系。钢中添加镁可以细化夹杂物,并对氧化物、硫化物进行有效变质,反应产物不易聚合成大的簇团。但金属镁熔点、沸点低,加入钢水后迅速气化,易导致钢水喷溅事故。国内曾有个别企业尝试过向钢液中直接加入镁合金,但因为喷溅严重而放弃。山钢集团莱芜钢铁集团有限公司炼钢厂“120t转炉→LF/RH→4号CC”生产线主要生产别管线钢、船板钢、压力容器钢和高层建筑结构钢,精炼结束后一般采用钙处理,钢中检测到的夹杂物尺寸偏大。
通常按三种方式对镁合金分类:合金化学成分,半成品加工成形工艺,是否含锆或铝。
按化学成分就是按其主要合金化元素分类:Mg-Al、Mg-Mn、Mg-Zn、Mg-Si、Mg-RE、Mg-Zr、Mg-Th、Mg-Ag与Mg-Li等二元系合金,以及Mg-Al-Zn、Mg-Al-Mn、Mg-Mn-Ce、Mg-RE-Zr、Mg-Zn-Zr等三元系合金,Mg-Zn-RE-Zr、Mg-Al-Mn-Zn、Mg-Zn-RE-Zr、Mg-Zn-Zr-Ag、Mg-Al-Mn-Zn等四元合金及更复杂的多元合金,如Mg-Ag-Th-RE-Zr等五元合金,等等。
常规镁合金的品种虽远不如铝合金的多,也不如铜合金那么丰富多彩,但新的合金系不断涌现,性能的镁合金显露头角,一些含新合金元素的镁合金成为研究热点。
向现有的镁合金添量合金化元素如表面活性元素钙、锶、钡、锑、锡、铅、铋等,对合金成分进行重新设计,以获得有良好综合性能的或有某种特殊性能的新型镁合金;含(钍(Th)的新型航天镁合金已获得实际应用,如Mg-Th-Zr、Mg-Th-Zn-Zr和Mg-Ag-Th-RE-Zr合金以用于制造火箭和飞船的一些零件,取得了好的效果。不过Th是一种放射性元素,对人体健康与环境都有危害,被限制使用,有些国家如英国将含Th量大于2%的合金列为放射性材料有关管理条例与规定,这不但很麻烦,而且加大了零件的制造难度与生产成本。稀土元素可赋于镁合金一系列的性能,有望成为可以替代钍的理想的镁的合金化元素。看来,Mg-RE合金有着灿烂的应用前程。
按成形工艺可将镁合金分为:铸造的和变形的两大类,前者占镁消费量的85%以上,因为镁合金的加工成形性能差,生产工艺复杂,加工成本高,在很大程度上限制了它的广泛应用。这两类合金在成分与冶金组织性能方面有很大差异,铸造镁合金主要用于压铸交通运输装备、机器、电气电子产品等零配件,压铸镁合金工件具有铸造、表面品质优良、铸造组织、晶粒细小均匀、可产壁厚薄和形状复杂的工件。铝有相当高的强化效果,含铝的镁合金有良好的铸造性能,但铝的含量不得低于3%;锌也是镁合金的强化性合金元素,但合金中的含量2%则有较强的热裂倾向;Mn可与Al、Fe形成AlFeMn化合物,它的密度比镁合金熔体的大,会沉于炉底部,混入渣中,有害杂质Fe得以清除,Mn还能细化组织;稀土元素对镁合金的铸造性能入一些其他性能都有益。
Ni、Fe、Cu降低镁合金的抗蚀性,是极为有害的杂质,应严格控制其含量。为推广镁合在结构中的应用,宜加强对变形镁合金的研究,但由于镁为密集六方晶格,塑性变形能力比铝及铝合金的低得多,几乎不可能获得既有高的室温强度又有加工成形性能良好的镁合金,因此,早期的变形镁合金设计时要求其组织中不含或尽量少含金属间化合物,以使镁合金保持良好的塑性与高的力学性能,合金强度性能的提高主要靠合金元素的固溶强化和塑性变形引起的加工硬化。过去使用的含1.5%Mn的镁合金就是这样的合金。
目前,变形镁合金使用的主要合金化元素有铝、锰、稀土、钇、锆、锌,它们一方面可以提高镁合金的强度性能,另方面可改善镁合金的热变形能力,从而可以进行锻压和挤压,AZ31B、C、E合金广泛用于挤压生产,具有高的强度性能与良好的塑性,它们属Mg-Al-Mn-Zn系合金,合金元素含量相等,但杂质含量则有别。AZ31系列合金在轧制板、带材时的裂边倾向随铝含量的增大而上升,因此,AZ61合金几乎不同于轧制板、带材。
铝、锆是镁合金主要的合金化元素,因此可根据其是否含铝、锆将其划分为含铝的或含锆的镁合金,以及不含铝或不含锆的镁合金。锆是镁合金的很有价值的合金化元素,具有的细化晶粒作用,然而不尽如人意的是,它可与Mn、Al形成稳定的密度较大的金属间化合物,沉于坩埚或炉底部,削弱或甚至消除了应起的作用,为此除MBI5合金含锆外,其他的变形镁合金都不含锆,铸造镁合金ZM5、ZM10也不含锆。