东阿县佛碳漆岗亭贵吗
-
面议
车牌辨认系统的顺应性急需增强
目前我国的车牌辨认产品都请求所辨认的车牌大小固定,而对过大和过小的车牌普通都不能辨认。这样就形成对视频触发的状况下局部车牌无法被辨认的问题。此外,在有些现场环境中,由于受外界条件的影响,无法将相机架设在位置,会形成图片中车牌不同水平的偏移。
车牌辨认系统对污损车牌的辨认效果不好
在公路和城市内的实践应用过程中,很难所触及到的车牌都是没有污损的,车牌在运用几年之后,难免会呈现污染和磨损等现象,而在路面上行驶的车辆也很难都是规范洁净的车牌,因而在实践环境中,面对破损污旧的车牌,如何进步车牌辨认系统的辨认才能也是实践需求处理的问题。
图像采集
根据车辆检测方式的不同,图像采集一般分为两种,一种是静态模式下的图像采集,通过车辆触发地感线圈、红外或雷达等装置,给相机一个触发信号,相机在接收到触发信号后会抓拍一张图像,该方法的优点是触发率高,性能稳定,缺点是需要切割地面铺设线圈,施工量大;另一种是视频模式下的图像采集,外部不需要任何触发信号,相机会实时地记录视频流图像,该方法的优点是施工方便,不需要切割地面铺设线圈,也不需要安装车检器等零部件,但其缺点也十分显著,由于算法的极限,该方案的触发率与识别率较之外设触发都要低一些。
字符分割
定位出车牌区域后,由于并不知道车牌中总共有几个字符、字符间的位置关系、每个字符的宽高等信息,所以,为了车牌类型匹配和字符识别正确,字符分割是的一步。字符分割的主要思路是,基于车牌的二值化结果或边缘提取结果,利用字符的结构特征、字符间的相似性、字符间间隔等信息,一方面把单个字符分别提取出来,也包括粘连和断裂字符等特殊情况的处理;另一方面把宽、高相似的字符归为一类从而去除车牌边框以及一些小的噪声。一般采用的算法有:连通域分析、投影分析,字符聚类和模板匹配等。污损车牌和光照不均造成的模糊车牌仍是字符分割算法所面对的挑战,有待更好的算法出现并解决以上问题。
硬件识别:通俗的解释是通过立的硬件设备,对所抓拍图片进行一系列的字符处理;目前停车场系统行业中硬件识别也分为两种,即带有单的车牌识别仪和前端硬件识别两种,安视睿主要采用的是前端硬件识别。
前端硬件识别一体式摄像机适应市场需求,目前得到了广大客户的喜爱。安视睿前端硬件识别也叫一体式车牌识别摄像机,是将传统单的车牌识别仪嵌入至摄像机中,实现前端硬件与摄像机一体化,实现图像抓拍、视频流传输、字符识别、道闸抬杆等一系列的工作。
小区出入口
车牌识别还有小区的出入口收费系统之间进行联动,主要作用就是可以识别进入到小区的车辆是否属于本在小区进行注册的小区业主的车辆,如果像是一些外来的车辆,那么就可以查相关的资料,同时还需要进行记录进入的时间,到出小区的时候进行相应的收费根据。有了车牌识别系统之后,甚至能够做到无人值守,而且来说配合支付宝或者是等第三方应用,这样就能实现自动进行收费,比较常见于各大小区以及大型的超市。