隆化县生产新型超塑性镁合金供应新型超塑性镁合金
-
¥120.00
根据密度泛函理论(DFT),大部分非稀土元素,如Al、Zn或Ag,有助于提升Ⅰ型锥面和Ⅱ型锥面间交滑移激活能垒,阻碍交滑移开启,通常会对塑性产生不利影响。然而,Mg-3Al-1Zn(AZ31)合金的塑性通常纯镁,归因于纯镁存在明显的剪切带和大量二次孪晶,导致塑性变形不稳定,易产生应力集中。近期,Ahmad等人使用DFT理论预测了含有大量新型合金元素(如K、Sr和Li)的三元和四元非稀土Li-Al、Li-Zn基合金的塑性变形能力。通过引入塑性因子χ,对交滑移阻力加以表达,量化合金元素提升塑性的效果。当塑性因子χ= 1时,交滑移速率PB转变速率10倍,足以显著提升塑性;当塑性因子χ< 0时,将对塑性产生不利影响。此研究可进一步预测含有Sr、Mn、K、Sn、Ca和Zr元素的多元镁合金的塑性变形行为。通过对比Mg-Al-Zn-Ca-Mn、Mg-Zn-Sr及Mg-Mn-Sr合金实验结果,证实了理论的准确性。
现在人们也认识到,ECAP加工在AZ31合金中产生了的超塑性性能,分析表明晶界滑动可能是控制速率的机制。
实际上,AZ31合金是一种单相镁合金,预计在高温超塑性变形过程中,第二相的缺失将导致动态晶粒长大。近的一项分析证明了在镁合金中保持非常小的晶粒尺寸对于超塑性流动的重要性。
镁(Mg)合金由于其固有的低密度和高比强度,是有前途的轻质结构材料,特别是在交通运输和航空航天领域。大多数高强度镁合金在室温下表现出较差的成形性和延展性,这限制了它们的广泛应用。通过适当的合金化设计和/或精细的微观结构控制,一些新开发的镁合金包括稀土 (RE) 和不含稀土的镁合金,在不显著降低强度的情况下表现出增强的延展性。本文为了找出其中的关键原因,从合金化设计策略和加工技术的微观结构控制等方面回顾了近期关于韧性镁合金的研究。在这篇综述中,本文从合金化设计策略和通过加工技术进行的微观结构控制方面回顾了具有增强延展性的镁合金的新发展。它可以通过适当的合金化设计与智能微结构控制相结合,为制造具有增强的成形性和延展性的镁合金提供见解。