集水槽主要承受集水槽内的内水压力作用,其次是单层配水槽传来的集中荷载及风荷载。内水压力随水深增加,压力越大,在内水压力作用下,集水槽壁板同时承受弯矩与拉力作用。采用传统平面假定方法不易准确计算出集水槽壁板承受的拉力,且不能根据水压力的特点进行变截面设计,同时忽略了暗框架与集水槽壁板作为一个整体,共同承受内水压力。
对于暗框架而言,采用传统平面假定计算,暗框架布置间距范围的内水压力全部由暗框架承受。由此计算计算出的暗框架结构尺寸偏大,忽略了集水槽侧壁共同受力的作用,计算方法偏保守。不能达到优化设计,节省工程造价的目的。
对于集水槽的桩基布置,传统的竖向荷载平均法计算出的桩数偏多,不易准确计算出桩承受的水平力。由集水槽结构形式及受力特点分析可以看出,集水槽各部分构件之间是相互协同作用,共同承受集水槽内水压力及其他荷载。平面假定简化计算只能顾此失彼,不能进行整体计算。因此,为准确真实地模拟集水槽结构整体受力的特性,满足结构优化设计的目的,集水槽的结构设计有必要采用三维有限元整体分析计算。
集水槽为地面式钢筋混凝土结构,位于高位收水冷却塔收水装置下。其所受荷载为:自重: 25 kN/m集水槽内水压力: 为水深的线性函数,大为140 kN/m风荷载:基本风压:0.40 kPa集中荷载:单层配水槽传来的集中荷载。集水槽内水压力作为面荷载作用于集水槽侧壁及底板,风荷载作为面荷载作用于集水槽侧壁,单层配水槽传来的集中荷载作用于集水槽暗框架顶梁上。
对于集水槽桩基而言,三维有限元仿真计算,能准确计算出每根桩的桩顶竖向力及水平力,进行桩基优化布置和选型设计。
一般的二沉池和集水槽较多地采用玻璃钢或不锈钢材料 ,为减少浮力对这类集水槽产生的影响 ,集水槽应设平衡孔。 泉州宝洲污水处理厂一期规模为5.0万 m3 /d, K总 = 1. 3,现有 2座圆形辐流二沉池即采用了不锈钢材料做集水槽和三角堰板 ,集水槽采用双侧集水环行集水槽 ,环行槽每 4. 5°开一个平衡孔 ,孔径为 40 mm,共 80孔。 实际运行过程中沉淀后出水很大比例均从平衡孔中冒出 ,三角溢流堰出水较少从而影响出水水质。 为解决平衡孔开设影响三角堰均匀溢流出水的问题 ,结合泉州宝洲污水处理厂二沉池平衡孔的开设方式 ,平衡孔的水量可按薄壁小孔口淹没出流公式进行计算 ,平衡孔对三角堰进水的影响按 5% 以内考虑 ,则计算平衡孔孔径经推导计算表达式可写为nd2 = 0. 023 2K总 Q / h1 /2 ( 2) 式中 , n 为平衡孔数; d 为平衡孔孔径 ( m ); K总为污水总变化系数; Q 为单座二沉池设计污水量 ( m3 /s)。
按给水澄清池环行集水槽计算公式计算得出堰上水头为 0. 03 m ,跌水头为 0. 07 m , h 值按经验取值为 0. 1 m。 结合宝洲污水处理厂二沉池工程实例,经计算孔径值为 19 mm。 而该项工程开孔为 40 mm ,可以看出与计算值的明显差异 ,成为导致沉淀后的出水大部分直接从底部平衡孔流出 ,设计均匀分布的三角堰作用降低的根本原因。为解决三角堰不能均匀集水的现象 ,主要的措施只能是减少平衡孔数。 按式 ( 2)计算 ,平衡孔数只有17个。为此本项工程在实际的运行中的平衡孔现已减少了 60个 ,其配水的均匀性及出水水质均得到了较大的改善。
出水堰槽的设置方式及位置在现行设计水力负荷和停留时间下是影响出水水质的一个主要因素 , 上述试验数据虽然进一步验证了由污水处理厂运行维护与管理等相关文章提出的圆形中心进水二沉池出水水质位置不在靠近池壁处这一现象 ,但理论上还没有较全面的解释和分析 ,仍然有深入研究的必要。
在工程应用中 ,为确保沉淀效果和出水水质 ,设计除依照规范尽可能减少堰上负荷外 ,还避免堰的设置位置不当对出水带来的影响 ,应避免采用外置单侧堰方式出水; 二沉池出水设计为内置双侧堰出水时 ,也宜设计离池壁 2~ 3 m处。 另外二沉池出水堰槽设计平衡孔时 ,也应在设计中选择适当的计算方法确定 ,使二沉池出水槽和溢流堰处在合理的运行状态。