江苏徐州超声冲击设备厂家电话
-
面议
★可将焊趾处的焊接余高,凹坑咬边等现象理想化处理至几何过度,降低应力集中系数。
★可去除焊趾处的围观裂纹,弥补熔渣缺陷,同时抑制裂纹提前萌生。
★ 用于消除焊接残余应力可完全替代热处理等时效方法。
★ 冲击枪设计,消除了传统时效设备和同行业设备操作笨重,现场无法操作的难题,减少了现场人员劳动量。
★ 对大型结构件的焊缝现场处理、低焊缝处理、焊接修复焊缝的应力消除效果更佳。
★ 超宽的频率跟踪范围,可有效跟踪外界因素影响引起的频率变化
★ 采用压电陶瓷换能器,输出强劲,使用寿命长。
★ 经济、实用、环保、节能、安全、。
JG-90超声波消除应力机详细参数
1、输出功率:1500W
2、输出频率:20KHz
3、输出振幅:100±5um
4、换能器类型:压电陶瓷
5、连续工作时间:18h
6、冷却方式:风冷
7、处理速度:0.1m~0.5m/min
8、电压:AC 220V 50HZ
9、冲击枪重量:3.6KG
超声波焊接应力消除设备的基本原理
超声波焊接应力消除设备的基本原理就是利用大功率超声波推动冲击工具以每秒二万次以上的频率冲击金属物体表面,由于超声波的高频、和聚焦下的大能量,使金属表层产生较大的压缩塑性变形;同时超声波焊接应力消除设备波改变了原有的应力场,产生一定数值的压应力;并使被冲击部位得以强化。
所以超声波焊接应力消除设备能够显著提高金属焊接接头及结构的疲劳强度,大幅度延长其疲劳寿命;消除残余拉应力,并使被冲击部位产生压应力,从而提高工件的承载能力;有效改善焊趾的几何形状,大大降低焊趾处的应力集中系数,其效果大大优于TIG工艺;消除焊趾表层微小裂纹和焊接缺陷,抑制裂纹提前萌生;强化金属零件表面,提高表面质量和使用寿命。该设备、节能、、使用方便,不受工件形状、场地、环境的限制,处理效果显著。
超声波焊接应力消除设备提高焊接接头疲劳性能的基本原理
金属结构件在焊接时,普遍采用熔化焊接的方法,在金属的填充过程中,在接头部位留有余高、凹坑及各种焊接缺陷,造成严重的应力集中;同时还产生一定的焊接残余应力。在绝大多数情况下,残余拉应力对焊接结构的疲劳强度是不利的。同时,大量研究表明,在焊趾部位距离表面0.5mm左右处一般存有熔渣等缺陷,该缺陷较尖锐,相当于疲劳裂纹提前萌生。在应力集中、焊趾熔渣缺陷及焊接残余拉应力的联合作用下,焊接接头的疲劳强度和疲劳寿命被严重降低。
超声波冲击设备应力消除简介
消除焊接残余应力并产生出理想压应力的时效方法(各种消除残余应力的情况如下:振动时效30~80%、热时效40~80%、超声冲击时效80~100%)。
超声冲击(UIT/UP)技术由世界的乌克兰Paton焊接研究所在1972年早提出,并由Paton焊接研究所和俄罗斯“量子”研究院共同开发成功,早用于前苏联海军船只的降低焊接残余应力,引入有益的压应力。1974年,Polozky等人公开发表了将超声冲击技术应用于消除焊缝残余应力的文章。在高能超声(HPU)领域,超声冲击技术成为了一个很有前途的研究方向,并且应用范围已延伸到各种材料、构件及焊接单元。
到目前为止,超声冲击技术在俄罗斯、乌克兰、法国、日本、挪威、瑞典、加拿大及美国等国的铁路、海洋工程、汽车、装甲车辆、重型工程机械、机械零部件、飞机、桥梁、机车车辆、石油管线、化工机械设备等诸多领域均有所应用。
超声波消除应力机应用领域
超声冲击枪产品也已形成系列化产品,可广泛应用于船舶、石化、航空、铁路、风力涡轮机、钢或复合材料桥梁,重型起重机械等领域,适用于各种材料焊接结构的焊后处理,达到延长焊接结构疲劳寿命、提高其疲劳强度的目的,并且能在一定程度上消除焊接过程应力和残余应力,特别适用于普通接头、承载接头以及异种材料焊接接头等结构的焊后处理。
应力变形原因
焊接造成的残余内应力如何消除一直是行业内普遍存在的问题,由于残余内应力的存在,因此产品在内应力释放的过程中,就会在应力残留位置产生翘曲、变形甚至开裂的情况。另外对于结构刚度、杆件稳定性、静载强度、疲劳强度、构件脆性也有一定影响。
超声波消除焊接应力特点
超声冲击去除应力方法适合焊接应力(焊接过程中产生的应力)。 超声冲击技术的特点是单位时间内输入能量高,实施装置的比能量(输出能量与装置质量之比)大。振动处理频率可高达18KHZ-27KHZ,振动速度可达2m/s-3m/s,加速度高达重力加速度的三万多倍,高速瞬时的冲击能量使被处理焊缝区的表面温度以的速度上升到600℃,又以极快的速度冷却。这种高频能量输入到焊缝区表面后,使能量作用区的表层金属的相位组织发生一定的变化。 使焊缝区的金属表面层内的拉伸残余应力变为压应力,从而能大幅度地提高结构的使用疲劳寿命。 表面层内的金属晶粒变细,产生塑性变形层,从而使金属表面层的强度和硬度有相应的提高。 改善焊趾的几何形状,降低应力集中。 改变焊接应力场,明显减少焊接变形。
主要应用于以下四个方面:
(1)对金属零件表面进行强化处理,以提高零件的表面质量和疲劳寿命;
(2)调节应力场,减少焊接变形,工件的尺寸稳定性;
(3)对机械零件局部焊接修复部位进行消除焊接应力的处理。现在该方法在国外机 械制造工程中,特别是对疲劳性能有较高要求和要求消除残余应力的焊接结构工作中已普遍使用。
(4)改善影响焊缝疲劳性能的几个方面的因素,如:残余应力、微观裂纹和缺陷、焊趾几何形状、表面强化等,是目前提高焊缝疲劳性能有效的方法。