青岛智能人脸识别系统价格
-
面议
主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。人脸检测过程中使用Adaboost算法挑选出一些能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。
一般来说,人脸识别系统包括图像摄取、人脸定位、图像预处理、以及人脸识别(身份确认或者身份查找)。系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图象或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。
人脸的外形很不稳定,人可以通过脸部的变化产生很多表情,而在不同观察角度,人脸的视觉图像也相差很大,另外,人脸识别还受光照条件(例如白天和夜晚,室内和室外等)、人脸的很多遮盖物(例如口罩、墨镜、头发、胡须等)、年龄等多方面因素的影响。
人脸识别主要用于身份识别。由于视频监控正在快速普及,众多的视频监控应用迫切需要一种远距离、用户非配合状态下的快速身份识别技术,以求远距离快速确认人员身份,实现智能预警。人脸识别技术无疑是佳的选择,采用快速人脸检测技术可以从监控视频图象中实时查找人脸,并与人脸数据库进行实时比对,从而实现快速身份识别。
人脸识别被认为是生物特征识别领域甚至人工智能领域困难的研究课题之一。人脸识别的困难主要是人脸作为生物特征的特点所带来的。不同个体之间的区别不大,所有的人脸的结构都相似,甚至人脸器官的结构外形都很相似。这样的特点对于利用人脸进行定位是有利的,但是对于利用人脸区分人类个体是不利的。
人脸自动对焦和笑脸快门技术:是面部捕捉。它根据人的头部的部位进行判定,确定头部,然后判断眼睛和嘴巴等头部特征,通过特征库的比对,确认是人面部,完成面部捕捉。然后以人脸为焦点进行自动对焦,可以大大的提升拍出照片的清晰度。 笑脸快门技术就是在人脸识别的基础上,完成了面部捕捉,然后开始判断嘴的上弯程度和眼的下弯程度,来判断是不是笑了。以上所有的捕捉和比较都是在对比特征库的情况下完成的,所以特征库是基础,里面有各种典型的面部和笑脸特征数据。