长宁从事分子筛回收
-
面议
对于沸石分子筛的形成及其生长机理的深入研究有助于人们更好的设计合成新型沸石分子筛拓扑结构、扩展沸石分子筛材料合成新路线、开发沸石分子筛材料的新性质及新用途。尽管沸石分子筛的发展已经有许多年了,但是对于它的合成机理方面一直未有一个真正的定论。研究分子筛的晶化机理即具有十分重要的理论意义,也对合成新型的沸石分子筛合成具有实际的指导意义。目前具有代表性的为固相转变机理(Solid hydrogel Transformation mechanism)、液相转变机理(Solution-mediated Transport mechanism)和双相转变机理这三种机理。
双相转变机理
在人们对于沸石分子筛晶化究竟是通过液相转变机理还是通过固相转变机理争执不清时,八十年代之后,又有科学家提出了双相转变的机理。双向转变机理认为液相转变和固相转变同时存在沸石分子筛晶化过程中,既可以分别发生在两种晶化反应体系中,也可以同时发生在一个体系中。
Gabelica等人从对ZSM-5分子筛以及Na Y沸石晶化的研究印证了双相转变机理的存在性。Iton等人在ZSM-5分子筛的晶化过程中应用小角中子散射技术进行研究,同时发现使用不同的硅源,ZSM-5沸石分子筛的晶化是遵循不同的机理进行。从而得出即使是同一种类型沸石分子筛,在不同的晶化条件下其生长的机理是不一样的结论。
对于合成沸石分子筛,温度是一个很重要的因素。温度变化会影响水在反应釜中的压力的变化、硅铝酸盐的聚合状态和聚合反应、凝胶的生成和溶解与转变、分子筛的成核与生长以及介稳相间的转晶。相同的体系在不同的温度下可能会得到完全不一样的物相,温度越高得到的沸石的尺寸和孔体积越小,晶体骨架密度相应增大。一般而言在150 °C以下,初级结构往往是四元环或六元环,而当温度150 °C,则往往是五元环的初级结构单元。由此可见,在高温水热条件下,无机物(主要是硅铝酸盐物种)的造孔规律和晶化温度与水蒸汽压之间存在着密切的联系。
晶化时间往往也是分子筛合成的一个重要因素。晶化时间不够常常会有大量的原料未转化,时间过长,往往会发生晶体转晶的现象,一般由比较空旷的结构转化为比较致密的结构。晶化时间与晶化温度往往是相辅相成的,降低温度,就要增加晶化时间;升高温度,有时就要缩短晶化时间。