晶圆传片设备主要由洁净大气机械手、晶圆载物台、晶圆对准器、视觉系统、控制系统、空气过滤器组成一个高洁净度的运行空间,工厂自动化系统调度天车将晶圆盒放在晶圆载物台上,晶圆载物台通过开盒装置将晶圆盒打开,并将晶圆盒与设备的洁净空间连通,晶圆载物台在开盒时会扫描晶圆的位置并和工厂自动化系统中的晶圆位置进行校验,校验无误后工厂自动化系统会发送任务到晶圆传片设备,晶圆传片设备会根据任务来对传片、缺口和圆心对准、读取ID、翻片、倒片等动作进行组合,任务结束后晶圆载物台会扫描晶圆位置并关闭晶圆盒,工厂自动化系统会调度天车将晶圆盒取走到下程。晶圆传片设备的应用可以使晶圆下线、传片、翻片、出厂过程实现全自动化运行,可以显著提升晶圆制造的效率和良率。
在过去三十年期间,切片(dicing)系统与刀片(blade)已经不断地改进以对付工艺的挑战和接纳不同类型基板的要求。新的、对生产率造成大影响的设备进展包括:采用两个切割(two cuts)同时进行的、将超程(overtravel)减到小的双轴(dual-spindle)切片系统。
硅圆片切割应用的目的是将产量和合格率大,同时资产拥有的成本小。可是,挑战是增加的产量经常减少合格率,反之亦然。晶圆基板进给到切割刀片的速度决定产出。随着进给速度增加,切割品质变得更加难以维持在可接受的工艺窗口内。进给速度也影响刀片寿命。
顶面碎片(TSC, top-side chipping),它发生晶圆的顶面,变成一个合格率问题,当切片接近芯片的有源区域时,主要依靠刀片磨砂粒度、冷却剂流量和进给速度。背面碎片(BSC, back-side chipping)发生在晶圆的底面,当大的、不规则微小裂纹从切割的底面扩散开并汇合到一起的时候(图1b)。当这些微小裂纹足够长而引起不可接受的大颗粒从切口除掉的时候,BSC变成一个合格率问题。
当切片机有稳定的冷却剂流量和所有其它参数都受控制时,维持一个稳定的扭矩。如果记录,从稳定扭矩的任何偏离都是由于不受控的因素。这些包括由于喷嘴堵塞的冷却剂流量变化、喷嘴调整的变化、刀片对刀片的变化、刀片情况和操作员错误。
随着信息化时代的到来,我国电子信息、通讯和半导体集成电路等行业迅猛发展,我国已经成为世界二极管晶圆、可控硅晶圆等集成电路各种半导体晶圆制造大国。传统的旋转砂轮式晶圆切割技术在实际生产中受到工艺极限的影响,晶圆加工存在机械应力、崩裂、加工效率低、成品率低的情况,的限制了晶圆制造水平的发展。传统晶圆切割手段已经无法满足晶圆产品率、生产需求。因此,旋转砂轮式切割工艺所伴随的问题是无法通过工艺本身的优化来完全解决的,亟需采取新的加工方式解决晶圆切割划片的瓶颈;现有划片机自动化程度及功能都很难满足电子器件生产的可靠性和技术性能要求。