六层PCB板厂家,刚柔结合板
-
面议
软硬结合板的涨缩问题:
涨缩产生的根源由材料的特性所决定,要解决软硬结合板涨缩的问题,先对挠性板的材料聚酰亚胺(Polyimide)做个介绍:
(1)聚酰亚胺具有优良的散热性能,可承受无铅焊接高温处理时的热冲击;
(2)对于需要更强调讯号完整性的小型装置,大部份设备制造商都趋向于使用挠性电路;
(3)聚酰亚胺具有较高的玻璃转移温度与高熔点的特性,一般情况下要在350 ℃以上进行加工;
(4)在有机溶解方面,聚酰亚胺不溶解于一般的有机溶剂。
挠性板材料的涨缩主要跟基体材料PI和胶有关系,也就是与PI的亚胺化有很大关系,亚胺化程度越高,涨缩的可控性就越强。
按照正常的生产规律,挠性板在开料后,在图形线路形成,以及软硬结合压合的过程中均会产生不同程度的涨缩,在图形线路蚀刻后,线路的密集程度与走向,会导致整个板面应力重新取向,终导致板面出现一般规律性的涨缩变化;在软硬结合压合的过程中,由于表面覆盖膜与基体材料PI的涨缩系数不一致,也会在一定范围内产生一定程度的涨缩。
从本质原因上说,任何材料的涨缩都是受温度的影响所导致的,在PCB冗长的制作过程中,材料经过诸多 热湿制程后,涨缩值都会有不同程度的细微变化,但就长期的实际生产经验来看,变化还是有规律的。
如何控制与改善?
从严格意义上说,每一卷材料的内应力都是不同的,每一批生产板的过程控制也不会是完全相同的,因此,材料涨缩系数的把握是建立在大量的实验基础之上的,过程管控与数据统计分析就显得尤为重要了。具体到实际操作中,挠性板的涨缩是分阶段的:
是从开料到烘烤板,此阶段涨缩主要是受温度影响所引起的:
要烘烤板所引起的涨缩稳定,要过程控制的一致性,在材料统一的前提下,每次烘烤板升温与降 温的操作一致化,不可因为一味的追求效率,而将烤完的板放在空气中进行散热。只有这样,才能大程度的消除材料的内部应力引起的涨缩。
第二个阶段发生在图形转移的过程中,此阶段的涨缩主要是受材料内部应力取向改变所引起的。
要线路转移过程的涨缩稳定,所有烘烤好的板就不能进行磨板操作,直接通过化学清洗线进行表面前处理,压膜后表面须平整,曝光前后板面静置时间须充分,在完成线路转移以后,由于应力取向的改变,挠性板都会呈现出不同程度的卷曲与收缩,因此线路菲林补偿的控制关系到软硬结合精度的控制,同时,挠性板的涨缩值范围的确定,是生产其配套刚性板的数据依据。
第三个阶段的涨缩发生在软硬板压合的过程中,此阶段的涨缩主要压合参数和材料特性所决定。
此阶段的涨缩影响因素包含压合的升温速率,压力参数设置以及芯板的残铜率和厚度几个方面。总的来说,残铜率越小,涨缩值越大;芯板越薄,涨缩值越大。但是,从大到小,是一个逐渐变化的过程,因此,菲林补偿就显得尤为重要。另外,由于挠性板和刚性板材料本质的不同,其补偿是需要额外考虑的一个因素。
高速PCB设计指南之三
第三篇 高速PCB设计
(一)、电子系统设计所面临的挑战
随着系统设计复杂性和集成度的大规模提高,电子系统设计师们正在从事100MHZ以上的电路设计,总线的工作频率也已经达到或者超过50MHZ,有的甚至超过100MHZ。目前约50% 的设计的时钟频率超过50MHz,将近20% 的设计主频超过120MHz。
当系统工作在50MHz时,将产生传输线效应和信号的完整性问题;而当系统时钟达到120MHz时,除非使用高速电路设计知识,否则基于传统方法设计的PCB将无法工作。因此,高速电路设计技术已经成为电子系统设计师采取的设计手段。只有通过使用高速电路设计师的设计技术,才能实现设计过程的可控性。
(二)、什么是高速电路
通常认为如果数字逻辑电路的频率达到或者超过45MHZ~50MHZ,而且工作在这个频率之上的电路已经占到了整个电子系统一定的份量(比如说1/3),就称为高速电路。
实际上,信号边沿的谐波频率比信号本身的频率高,是信号快速变化的上升沿与下降沿(或称信号的跳变)引发了信号传输的非预期结果。因此,通常约定如果线传播延时大于1/2数字信号驱动端的上升时间,则认为此类信号是高速信号并产生传输线效应。
信号的传递发生在信号状态改变的瞬间,如上升或下降时间。信号从驱动端到接收端经过一段固定的时间,如果传输时间小于1/2的上升或下降时间,那么来自接收端的反射信号将在信号改变状态之前到达驱动端。反之,反射信号将在信号改变状态之后到达驱动端。如果反射信号很强,叠加的波形就有可能会改变逻辑状态。
(三)、高速信号的确定
上面我们定义了传输线效应发生的前提条件,但是如何得知线延时是否大于1/2驱动端的信号上升时间?一般地,信号上升时间的典型值可通过器件手册给出,而信号的传播时间在PCB设计中由实际布线长度决定。下图为信号上升时间和允许的布线长度(延时)的对应关系。
PCB 板上每单位英寸的延时为 0.167ns.。但是,如果过孔多,器件管脚多,网线上设置的约束多,延时将增大。通常高速逻辑器件的信号上升时间大约为0.2ns。如果板上有GaAs芯片,则大布线长度为7.62mm。
设Tr为信号上升时间, Tpd 为信号线传播延时。如果Tr≥4Tpd,信号落在安全区域。如果2Tpd≥Tr≥4Tpd,信号落在不确定区域。如果Tr≤2Tpd,信号落在问题区域。对于落在不确定区域及问题区域的信号,应该使用高速布线方法。
(四)、什么是传输线
PCB板上的走线可等效为下图所示的串联和并联的电容、电阻和电感结构。串联电阻的典型值0.25-0.55 ohms/foot,因为绝缘层的缘故,并联电阻阻值通常很高。将寄生电阻、电容和电感加到实际的PCB连线中之后,连线上的终阻抗称为特征阻抗Zo。线径越宽,距电源/地越近,或隔离层的介电常数越高,特征阻抗就越小。如果传输线和接收端的阻抗不匹配,那么输出的电流信号和信号终的稳定状态将不同,这就引起信号在接收端产生反射,这个反射信号将传回信号发射端并再次反射回来。随着能量的减弱反射信号的幅度将减小,直到信号的电压和电流达到稳定。这种效应被称为振荡,信号的振荡在信号的上升沿和下降沿经常可以看到。
(五)、传输线效应
基于上述定义的传输线模型,归纳起来,传输线会对整个电路设计带来以下效应。
· 反射信号Reflected signals
· 延时和时序错误Delay & Timing errors
· 多次跨越逻辑电平门限错误False Switching
· 过冲与下冲Overshoot/Undershoot
· 串扰Induced Noise (or crosstalk)
· 电磁辐射EMI radiation
5.1 反射信号
如果一根走线没有被正确终结(终端匹配),那么来自于驱动端的信号脉冲在接收端被反射,从而引发不预期效应,使信号轮廓失真。当失真变形非常显著时可导致多种错误,引起设计失败。同时,失真变形的信号对噪声的敏感性增加了,也会引起设计失败。如果上述情况没有被足够考虑,EMI将显著增加,这就不单单影响自身设计结果,还会造成整个系统的失败。
反射信号产生的主要原因:过长的走线;未被匹配终结的传输线,过量电容或电感以及阻抗失配。
5.2 延时和时序错误
信号延时和时序错误表现为:信号在逻辑电平的高与低门限之间变化时保持一段时间信号不跳变。过多的信号延时可能导致时序错误和器件功能的混乱。
通常在有多个接收端时会出现问题。电路设计师确定坏情况下的时间延时以确保设计的正确性。信号延时产生的原因:驱动过载,走线过长。
5.3 多次跨越逻辑电平门限错误
信号在跳变的过程中可能多次跨越逻辑电平门限从而导致这一类型的错误。多次跨越逻辑电平门限错误是信号振荡的一种特殊的形式,即信号的振荡发生在逻辑电平门限附近,多次跨越逻辑电平门限会导致逻辑功能紊乱。反射信号产生的原因:过长的走线,未被终结的传输线,过量电容或电感以及阻抗失配。
5.4 过冲与下冲
过冲与下冲来源于走线过长或者信号变化太快两方面的原因。虽然大多数元件接收端有输入保护二极管保护,但有时这些过冲电平会远远超过元件电源电压范围,损坏元器件。
5.5 串扰
串扰表现为在一根信号线上有信号通过时,在PCB板上与之相邻的信号线上就会感应出相关的信号,我们称之为串扰。
信号线距离地线越近,线间距越大,产生的串扰信号越小。异步信号和时钟信号更容易产生串扰。因此解串扰的方法是移开发生串扰的信号或屏蔽被严重干扰的信号。
5.6 电磁辐射
EMI(Electro-Magnetic Interference)即电磁干扰,产生的问题包含过量的电磁辐射及对电磁辐射的敏感性两方面。EMI表现为当数字系统加电运行时,会对周围环境辐射电磁波,从而干扰周围环境中电子设备的正常工作。它产生的主要原因是电路工作频率太高以及布局布线不合理。目前已有进行 EMI仿真的软件工具,但EMI仿真器都很昂贵,仿真参数和边界条件设置又很困难,这将直接影响仿真结果的准确性和实用性。通常的做法是将控制EMI的各项设计规则应用在设计的每一环节,实现在设计各环节上的规则驱动和控制。
(六)、避免传输线效应的方法
针对上述传输线问题所引入的影响,我们从以下几方面谈谈控制这些影响的方法。
6.1 严格控制关键网线的走线长度
如果设计中有高速跳变的边沿,就考虑到在PCB板上存在传输线效应的问题。现在普遍使用的很高时钟频率的快速集成电路芯片更是存在这样的问题。解决这个问题有一些基本原则:如果采用CMOS或TTL电路进行设计,工作频率小于10MHz,布线长度应不大于7英寸。工作频率在50MHz布线长度应不大于1.5英寸。如果工作频率达到或超过75MHz布线长度应在1英寸。对于GaAs芯片大的布线长度应为0.3英寸。如果超过这个标准,就存在传输线的问题。
6.2 合理规划走线的拓扑结构
解决传输线效应的另一个方法是选择正确的布线路径和终端拓扑结构。走线的拓扑结构是指一根网线的布线顺序及布线结构。当使用高速逻辑器件时,除非走线分支长度保持很短,否则边沿快速变化的信号将被信号主干走线上的分支走线所扭曲。通常情形下,PCB走线采用两种基本拓扑结构,即菊花链(Daisy Chain)布线和星形(Star)分布。
对于菊花链布线,布线从驱动端开始,依次到达各接收端。如果使用串联电阻来改变信号特性,串联电阻的位置应该紧靠驱动端。在控制走线的高次谐波干扰方面,菊花链走线效果好。但这种走线方式布通率低,不容易布通。实际设计中,我们是使菊花链布线中分支长度尽可能短,安全的长度值应该是:Stub Delay <= Trt *0.1.
例如,高速TTL电路中的分支端长度应小于1.5英寸。这种拓扑结构占用的布线空间较小并可用单一电阻匹配终结。但是这种走线结构使得在不同的信号接收端信号的接收是不同步的。
星形拓扑结构可以有效的避免时钟信号的不同步问题,但在密度很高的PCB板上手工完成布线十分困难。采用自动布线器是完成星型布线的好的方法。每条分支上都需要终端电阻。终端电阻的阻值应和连线的特征阻抗相匹配。这可通过手工计算,也可通过CAD工具计算出特征阻抗值和终端匹配电阻值。
在上面的两个例子中使用了简单的终端电阻,实际中可选择使用更复杂的匹配终端。种选择是RC匹配终端。RC匹配终端可以减少功率消耗,但只能使用于信号工作比较稳定的情况。这种方式适合于对时钟线信号进行匹配处理。其缺点是RC匹配终端中的电容可能影响信号的形状和传播速度。
串联电阻匹配终端不会产生额外的功率消耗,但会减慢信号的传输。这种方式用于时间延迟影响不大的总线驱动电路。 串联电阻匹配终端的优势还在于可以减少板上器件的使用数量和连线密度。
后一种方式为分离匹配终端,这种方式匹配元件需要放置在接收端附近。其优点是不会拉低信号,并且可以很好的避免噪声。典型的用于TTL输入信号(ACT,HCT, FAST)。
此外,对于终端匹配电阻的封装型式和安装型式也考虑。通常SMD表面贴装电阻比通孔元件具有较低的电感,所以SMD封装元件成为。如果选择普通直插电阻也有两种安装方式可选:垂直方式和水平方式。
垂直安装方式中电阻的一条安装管脚很短,可以减少电阻和电路板间的热阻,使电阻的热量更加容易散发到空气中。但较长的垂直安装会增加电阻的电感。水平安装方式因安装较低有更低的电感。但过热的电阻会出现漂移,在坏的情况下电阻成为开路,造成PCB走线终结匹配失效,成为潜在的失败因素。
6.3 抑止电磁干扰的方法
很好地解决信号完整性问题将改善PCB板的电磁兼容性(EMC)。其中非常重要的是PCB板有很好的接地。对复杂的设计采用一个信号层配一个地线层是十分有效的方法。此外,使电路板的外层信号的密度小也是减少电磁辐射的好方法,这种方法可采用"表面积层"技术"Build-up"设计制做PCB来实现。表面积层通过在普通工艺 PCB 上增加薄绝缘层和用于贯穿这些层的微孔的组合来实现,电阻和电容可埋在表层下,单位面积上的走线密度会增加近一倍,因而可降低 PCB的体积。PCB面积的缩小对走线的拓扑结构有的影响,这意味着缩小的电流回路,缩小的分支走线长度,而电磁辐射近似正比于电流回路的面积;同时小体积特征意味着高密度引脚封装器件可以被使用,这又使得连线长度下降,从而电流回路减小,提高电磁兼容特性。
6.4 其它可采用技术
为减小集成电路芯片电源上的电压瞬时过冲,应该为集成电路芯片添加去耦电容。这可以有效去除电源上的毛刺的影响并减少在印制板上的电源环路的辐射。
当去耦电容直接连接在集成电路的电源管腿上而不是连接在电源层上时,其平滑毛刺的效果好。这就是为什么有一些器件插座上带有去耦电容,而有的器件要求去耦电容距器件的距离要足够的小。
任何高速和高功耗的器件应尽量放置在一起以减少电源电压瞬时过冲。
如果没有电源层,那么长的电源连线会在信号和回路间形成环路,成为辐射源和易感应电路。
走线构成一个不穿过同一网线或其它走线的环路的情况称为开环。如果环路穿过同一网线其它走线则构成闭环。两种情况都会形成天线效应(线天线和环形天线)。天线对外产生EMI辐射,同时自身也是敏感电路。闭环是一个考虑的问题,因为它产生的辐射与闭环面积近似成正比。
结束语
高速电路设计是一个非常复杂的设计过程。本文所阐述的方法就是针对解决这些高速电路设计问题的。此外,在进行高速电路设计时有多个因素需要加以考虑,这些因素有时互相对立。如高速器件布局时位置靠近,虽可以减少延时,但可能产生串扰和显著的热效应。因此在设计中,需权衡各因素,做出全面的折衷考虑;既满足设计要求,又降低设计复杂度。高速PCB设计手段的采用构成了设计过程的可控性,只有可控的,才是可靠的,也才能是成功的!
如何评估汽车HDI PCB制造商
电子行业的蓬勃发展推动了众多行业的快速发展。近年来,电子产品在汽车工业中的应用日益广泛。传统的汽车工业在机械,动力,液压和传动方面进行了更多的努力。但是,现代汽车工业更多地依赖电子应用,而这些电子应用在汽车中发挥着越来越重要和潜在的作用。自动电气化全部用于处理,感测,信息传输和记录,而没有印制电路板(PCB)则无法实现。由于汽车现代化和数字化的要求,以及人类对汽车安全性,舒适性,简单操作和数字化的要求,PCB已广泛应用于汽车行业,高密度互连(HDI)PCB,可能带有跨层盲孔或双层结构。
为了实现汽车HDI PCB的高可靠性和安全性,HDI PCB制造商遵循严格的策略和措施,这是本文关注的。
汽车PCB类型
在汽车电路板中,可以使用传统的单层PCB,双层PCB和多层PCB,而近年来HDI PCB的广泛应用已成为汽车电子产品的。普通HDI PCB与汽车HDI PCB之间确实存在本质区别:前者强调实用性和多功能性,为消费电子产品提供服务,而后者则致力于可靠性,安全性和。
有必要说明一下,因为汽车涵盖了汽车,卡车或卡车等各种各样的汽车,要求对不同的性能期望和功能有不同的要求,所以本文将要讨论的法规和措施只是一些通用规则,不包括那些规则。特别案例。
汽车HDI PCB的分类和应用
HDI PCB可以分为单层HDI PCB,双层积层PCB和三层积层PCB.在此,层是指预浸料的层。
汽车电子产品通常在两类应用:
a.在与车辆的机械系统(例如发动机,底盘和车辆数字控制)配合使用之前,汽车电子控制设备将无法有效运行,特别是电子燃油喷射系统,防抱死制动系统(ABS),防滑控制(ASC) ,牵引力控制,电子控制悬架(ECS),电子自动变速器(EAT)和电子助力转向(EPS)。
b.可以在汽车环境中立使用且与汽车性能无关的车载汽车设备包括汽车信息系统或车辆计算机,GPS系统,汽车视频系统,车载通信系统和Internet设备功能,这些功能由HDI PCB支持的设备实现,这些设备负责信号传输和大量控制。
对汽车HDI PCB制造商的要求
由于高可靠性和汽车HDI印制电路板的安全性,汽车HDI PCB制造商符合高层次要求:
a.汽车HDI PCB制造商坚持在判断或支持PCB制造商的管理水平中起关键作用的集成管理系统和质量管理体系。某些系统在被第三方身份验证之前无法归PCB制造商所有。例如,汽车PCB制造商通过ISO9001和ISO / IATF16949认证。
b.HDI PCB制造商具备扎实的技术和较高的HDI制造能力。具体而言,从事汽车电路板制造的制造商制造线宽/间距至少为75μm/75μm且具有两层结构的电路板。公认的是,HDI PCB制造商具有至少1.33的工艺能力指数(CPK)和至少1.67的设备制造能力(CMK)。除非获得客户的认可和确认,否则不得在以后的制造中进行任何修改。
c.汽车HDI PCB制造商在选择PCB原材料时遵循严格的规则,因为它们在确定终PCB的可靠性和性能中起着关键作用。
汽车HDI PCB的材料要求
•核心板和半固化片。它们是制造汽车HDI PCB的基本,关键的元素。当涉及HDI PCB的原材料时,核心板和预浸料是主要考虑因素。通常,HDI核心板和介电层都相对较薄。因此,一层预浸料足以在消费类HDI板上使用。但是,汽车HDI PCB依赖于至少两层预浸料的层压,因为如果发生空腔或粘合剂不足,则单层的预浸料可能会导致绝缘电阻降低。之后,终结果可能是整个板子或产品的故障。
•阻焊膜。作为直接覆盖在表面电路板上的保护层,阻焊层也起着与核心板和预浸料相同的重要作用。除保护外部电路外,阻焊层在产品的外观,质量和可靠性方面也起着至关重要的作用。因此,汽车电路板上的阻焊层符合严格的要求。阻焊膜通过多项有关可靠性的测试,包括储热测试和剥离强度测试。
汽车HDI PCB材料的可靠性测试
合格的HDI PCB制造商绝不会认为材料选择是理所当然的。相反,他们对电路板的可靠性进行一些测试。有关汽车HDI PCB材料可靠性的主要测试包括CAF(导电阳极丝)测试,高温和低温热冲击测试,天气温度循环测试和储热测试。
•CAF测试。它用于测量两个导体之间的绝缘电阻。该测试涵盖许多测试值,例如层之间的小绝缘电阻,通孔之间的小绝缘电阻,埋孔之间的小绝缘电阻,盲孔之间的小绝缘电阻以及并联电路之间的小绝缘电阻。
•高温和低温热冲击测试。此测试旨在测试小于一定百分比的电阻变化率。具体而言,该测试中提到的参数包括通孔之间的电阻变化率,埋孔之间的电阻变化率和盲孔之间的电阻变化率。
•气候温度循环测试。被测板需要在回流焊接之前进行预处理。在-40℃±3℃至140℃±2℃的温度范围内,电路板在低温度和高温度下保持15分钟。结果,合格的电路板不会发生层压,白点或爆炸。
•高温存储测试。该测试主要针对阻焊层的可靠性,特别是其剥离强度。就阻焊层的判断而言,该测试被认为是严格的。
根据以上介绍的测试要求,如果基材或原材料不能满足客户要求,则可能会发生潜在的风险。因此,是否对材料进行测试可能是确定合格的HDI PCB制造商的关键因素。
可以使用许多策略和措施来判断汽车HDI PCB制造商,包括材料供应商认证,过程中的技术条件以及参数确定和附件的应用等。为寻找可靠的HDI PCB制造商,它们可能是重要的组成部分。确定和判断其可靠性作为参考。