商品详情大图

湖北襄阳仪器校准机构第三方计量校准机构

及时发货 交易保障 卖家承担邮费

商品详情

Hello!小伙伴们!使用Arc电极可以简化电极的管理,上期给大家演示了怎么查看电极的基础信息,那么这期给大家简单介绍一下使用ArcAir App如何校准电极,这里我们以pH电极为例,可以推广到其他电极,pH电极是两点校准,电导率电极是单点校准,DO电极可以进行单点或者双点校准。

需要的工具和设备:



Arc蓝牙无线适配器(1代货号 243460或者2代货号 243470)

电极需要供电,可以通过PCS给电极供电或者Arc USB电源线(货号243490-01)

带有ArcAir App的移动设备(平板或手机) 学术论文中,经常会提到容量增量(IC)法,具体的算法原理在这里就不详细讲解了,相信BMS算法工程师和研究者对此并不陌生,有大量的论文对此有详细的阐述。关于IC的研究,大家不妨注重阅读北京交通大学团队的论文,通过对北交团队论文的阅读,我发现北交对IC的研究已经相当详细了,只看该团队的论文,就能完全了解IC法,无需再阅读其他论文。IC曲线原本是主要用来研究电池老化路径和机理,可以用来对电池的SOH进行估计和预测。姜久春老师的讲座对此有过演讲,见下方链接:同时呢,也有学者发现IC可以用来进行SOC的校准,同时也有BMS企业对此有应用。

简单介绍一下IC曲线。

对于锂离子电池来讲,可以通过dQ/dV-V曲线,研究电池内部正负极材料的情况,d Q/d V曲线通常称之为电量增量(Incremental Capacity,IC)曲线,如下图(LFP电芯)。利用IC曲线分析电池的衰减机理,这类方法通常称之为ICA(Incremental Capacity Analysis);利用DV 曲线分析电池的衰减机理,这类方法通常称之为DVA(Differential Voltage Analysis)。

其实对上面两种曲线还有多种变形,在文献中也都有讲到,比如说将纵轴的dQ/dV换成dSOC/dV,也可以将IC曲线的横轴(图1)换成容量或者SOC, 其次,如果要通过上述曲线寻找SOC校准点,应该要明白IC曲线或者DV曲线以及变形曲线,可以反映电池电量的汇聚效应,可以理解为这些曲线能够反映在充电过程中某个电压区间或者某个SOC区间,充入的电量多(汇聚效应大),在另外一些区间则充入的电量少(汇聚效应小)。而我们要寻找SOC校准点,就是找到一个电压区间,其电量的汇聚效应要尽量小,请仔细思考该思想。

以图1为例,IC曲线有三个峰,分别是①、②、⑤,这三个峰对应的电压充入的电量多,汇聚效应大,尤其是②峰,每变化一个单位的电压其充入的电量非常多,也就说此时的电压与电量(或者SOC)的一一对应关系不明显,应该尽量在曲线两端的电压区间选择SOC校准点,比如说在3.5V时,对应的电量增量近乎为0,说明3.5V与电量(或SOC)的一一对应关系非常明显,因此在3.5V及以上的电压,适合用来作为SOC的校准点。那么对图2和图3进行分析,也会得到同样的结论,这跟上一篇文章中的SOC校准点的选择不谋而合。

其中,安徽的优旦科技在其官网中,提到利用上述方法进行SOC的校准,当然也可以用来进行SOH估计(至于如何用来进行SOH估计,后续文章会详细展开讲)

我们部门有一台脉冲测量仪,国内这几家校准机构都没法校准,只有国外这台设备的厂家可以自校准,这种情况应该怎么处理?答:CNAS-CL016.5.3 技术上不可能计量溯源到 SI 单位时,实验室应证明可计量溯源至适当的 参考对象,如:a) 具备能力的标准物质生产者提供的有证标准物质的标准值;b) 描述清晰的、满足预期用途并通过适当比对予以的参考测量程序、 规定方法或协议标准的结果-。CNAS-RL01:2018 7.6 当测量结果无法溯源至国际单位制(SI)单位或与 SI 单位不相关时,测量结果应溯源至RM、公认的或约定的测量方法/标准,或通过实验室间比对等途径,证明其测量结果与同类实验室的一致性。当采用实验室间比对的方式来提供测量的可信度时,应定期与 3 家以上(含 3 家)实验室比对。可行时,应是获得 CNAS 认可,或 APLAC、ILAC 多边承认协议成员认可的实验室。
在低渗(非常规)储层中,准确地描述水力裂缝有助于进一步理解井产能驱动因素。裂缝扩展模型了各种地质力学和完井信息的真实性,是生成真实裂缝几何形状的有力工具。本项研究基于内部位移不连续性方法(DDM),使用裂缝传播模型(称为ZFRAC)和人工智能(AI)实现工程校准的自动化。该工作流程(ZFRAC-AI)是业内有史以来次对裂缝模型自动校准,将现场规模水平井的校准时间从1周(人工校准)减少到3小时,同时基于泵注压力拟合,获取复杂的裂缝几何形状。

该工作流的过程记录如下。,定义了不确定性参数及其范围。然后,使用拉丁超立方体(LH)抽样方法生成M的初始样本量。接下来,使用ZFRAC模拟这些不确定性以及其他模型输入,并获得模拟的泵注压力响应。基于目标函数,建立了名为XGBoost的机器学习代理模型,迭代优化泵注压力拟合过程。这种类型的迭代将继续进行,直到达到大迭代,或满足收敛性检验。The best

佳拟合的选择基于:(1)稳定注入期间的良好拟合;(2)准确获取瞬时关井压力(ISIP);(3)整体相对误差小于10%。所开发的ZFRAC-AI工作流已应用于深层页岩气藏水平井。研究结果表明,ZFRAC-AI能够获得所有压裂阶段的一般泵送压力趋势。拟合整个水平井段(32段)的计算时间约为4小时。佳拟合的不确定性参数,如射孔孔数、孔径、摩擦系数和管道压力梯度等,可以得到轻松表征。更重要的是,每个完成段内每簇的平均高度和半长可以很容易地得到量化(平均高度大约为16米,半长大约为42米)。对簇平均高度和半场的量化大大降低了模拟岩石体积(SRV)的估算难度(约264万立方米)。ZFRAC-AI工作流能够缓解繁琐的裂缝模型人工校准问题,尤其是在完井段数较大的情况下。通过这一的工作流程,可以提高表征SRV体积的准确性。本项研究结果可为生产校准(历史拟合)、井距优化和完井设计优化提供有价值的建议。

气动量仪仪器校准方法:

1、气动量仪:使用前,应清除气动表和支架表面的灰尘和油渍,保持清洁;3.2气动内径测量头和校准的调整:

2、计算上下限校对轨距的范围:上限校对轨距为25.0276mm-下限校对轨距为24.9701mm=0.0575mm,取整数58μ为μ值。

3、然后计算标尺的数值范围:标尺的小刻度为2μ,上下限刻度规的量程为58μ,标尺的量程为29格。4、打开进气阀,插入下限校准量规24.9701毫米、,使喷嘴位于校准量规宽度的中间。将刻度表旋转360度,调节零位旋钮,使浮标处于下限位置,将红色光标箭头移至浮标处,与浮标平齐,标记24.9701mm;取下下限刻度规,插入上限刻度规,将刻度规旋转360度,使浮标处于上限位置,将红色光标箭头移至浮标处与浮标平齐,如有偏差,标记25.0276mm,将放大旋钮调至上限位置的反方向,即浮标在上限位置上方。调节放大旋钮,使浮标低于上限位置,然后用调零旋钮调节到上限位置。用上下限刻度规反复调整零位和放大旋钮,使浮标处于“+28”和“-30”的位置。

5、校准:气动压力表在使用前需要进行校准。校准方法是用上限校准规检查浮标的上限位置是否与25.0276mm的标记一致,用下限校准规检查浮标的下限位置是否与24.9701mm的标记一致,如果一致,则合格,可以使用。如果没有,按照3.2.3中的步骤进行调整,直到合格为止。

前言:计量器具在药品的生产过程中,有比较广泛的应用。本文仅就计量器具如何分类及其校准周期的确定粗略地谈些自己的看法。
1、 目的
建立计量器具分类管理、校准周期管理体系。
2、 范围
适用于公司计量器具的分类及周期管理。
3、 参考文件
3.1 《药品生产质量管理规范》(卫生部令第79号,2010版)
4、 职责
4.1 计量人员:负责起草及修订本文件。
4.2 质量部、质量控制部和生产部负责本规程的审核。
4.3 质量负责人负责本规程的批准。
5、 程序
5.1 计量器具的分类方法
5.1.1 结合“人民共和国计量法”及“计量法实施细则”对计量器具进行分类;
5.1.2 依据计量器具的质量、性能及本公司的实际情况,按照使用地点、使用要求和频繁程度,对其进行风险评估,依据风险评估的结果对计量器具进行分类。
5.2 计量器具风险评估方法
5.2.1 风险级数(R): R= x*y*z
其中,x:对工艺管理的影响;y:对物料产品检测的影响;z:对安全方面的影响。
5.2.2 x、y、z的风险评估评分标准见表1:x、y、z 的风险评估评分标准。

下一条:河南焦作气体探测器(仪)校准机构-器具计量检测机构
广东省世通仪器检测服务有限公司为你提供的“湖北襄阳仪器校准机构第三方计量校准机构”详细介绍
广东省世通仪器检测服务有限公司
主营:仪器计量,仪器校准,仪器检测,服务
联系卖家 进入商铺

湖北仪器校准信息

最新信息推荐

进店 拨打电话 微信