宝山电子卷料立体仓库
-
面议
图1为本文设计的智能机器人仓储物流系统总体方案,其集成了自动化立体仓库、AGV、机器人、视觉传感器、激取光料传感器等,由机器人完成物料的拾取、摆放、搬运和分捡,视觉系统完成对物料的形状、位置和颜色识别,传感器完成移动机器人的定位和避障等,该系统实现了齿轮箱的装配和拆解工作,其适用性广,衍生能力强。设计齿轮箱装配工艺流程如图2所示。
该智能机器人仓储物流系统主要包括自动化立体仓库、平台式AGV、复合机器人、双臂机器人、叉车AGV等硬件设备。
(1)自动化立体仓库
自动化立体仓库是现代生产系统自动化程度提高的重要标志,在有限的占地面积下能够实现货物的大量、有效存储,充分利用空间资源。如图3所示,本文设计自动化立体仓库包括货架、堆垛机、出入库平台组成。其中堆垛机的行走轴实现堆垛机沿着立体仓库长度方向运动、升降轴实现堆垛机沿着立体仓库高度方向运动,货叉伸缩轴实现货物托盘的抓取。出入库平台安装有货物托盘检测传感器,用于判断出入库平台与机器人的对接情况。零件出入库平台设有一段升降式运输平台①,其处于低位时与平台AGV对接,处于高位时与出入库平台②对接。
设计开发自动化立体仓库其管理系统具有货物入库、货物出库、入/出库人工修正、库存盘点、设备状态查询及设备故障记录等功能,可以自动记录设备故障信息,包括设备编码、故障时间、故障类别、故障说明等,在故障排除后由操作员在该记录中填写排除时间信息,并且可以按照设备编码、故障类别等进行设备故障记录查询,查询结果以列表形式显示在计算机屏幕上,并可以打印输出。
叉车 AGV叉车AGV具有激光导引系统、控制台和调度管理系统、在线自动充电系统、通讯系统及安全系统等。控制台和调度管理系统是AGV系统的调度管理中心,负责与上位机交换信息,生成AGV的运行任务,并将指令下发给AGV完成相应的任务。
智能机器人仓储物流系统主要由总控调度软件和立体仓库监控软件组成,立体仓库监控软件主要用于立体仓库状态反馈,以及零件/成品的存入和取出。 总控调度软件负责管理和控制所有的设备, 协调各个设备进行工作,以完成整体的传工输作控流制程。总控调度软件和其他跟各踪模块之间的关系如图5所示。
图5 软件结构图
系统中所有设备通过TCP/IP协议进行通信,如图6所示。使用路由器组建一个局域网,双臂机器人、立体仓库监控软件服务器、总控调度软件服务器通过有线的方式介入局域网,而复合机器人、平台式AGV、叉车AGV使用无线的方式介入局域网。在该局域网中,总控调度软件是整个系统的核心,允许直接监视其他设备的状态,并控制这些设备执行相应的动作。
存储管理:包括货架库存信息、立体仓库出入库历史信息记录和事件日志信息。人机交互界面:包括信息显示、手动操作和自动操作界面。
本文所设计的智能机器人仓储物流系统对AGV和复合机器人移动底盘的定位精度要求较高,尤其是在平台式AGV与立体仓库升降式运输平台对接及复合机器人和平台式AGV对接时,目前移动底盘常用的导航方式很难满足需求。针对目前AGV常用导航方式精度低、实时性差、无法实现位姿修正等问题,本文提出一种二维码视觉定位方法。将视觉摄像头安装于AGV的中心底部,使摄像头光心与AGV旋转中心重合,并在摄像头周围安装光源,克服光线变化的影响。通过识别地面上的二维码,经视觉处理将数据反馈给AGV运动控制系统,实现 AGV的定位。
旋转处理模型
旋转处理即以中心点为旋转参考点,旋转修正,如图10a所示。设定P0(x0 ,y0) 为轮廓中心点坐标,B(x23 ,y23)为待修正后矩形一边的中心点坐标, A(x'23,y'23)为修正后矩形一边的中心点坐标。根据P0和B点坐标求得A点坐标,如式(3):
AGV经过视觉位移处理和旋转处理,可以调节AGV当前位姿,提高AGV的定位精度,AGV与其他设备的对接可靠稳定。