商品详情大图

X2CrNiN22-2耐腐蚀双相不锈钢亮面线软白线

及时发货 交易保障 卖家承担邮费

商品详情

材质双相不锈钢

优缺点
与奥氏体不锈钢相比,双相不锈钢的优势如下:
(1)屈服强度比普通奥氏体不锈钢高一倍多,且具有成型需要的足够的塑韧性。采用双相不锈钢制造储罐或压力容器的壁厚要比常用的奥氏体减少30-50%,有利于降低成本。
(2)具有的耐应力腐蚀破裂的能力,即使是含合金量低的双相不锈钢也有比奥氏体不锈钢更高的耐应力腐蚀破裂的能力,尤其在含氯离子的环境中。应力腐蚀是普通奥氏体不锈钢难以解决的问题。
(3)在许多介质中应用普遍的2205双相不锈钢的耐腐蚀性优于普通的 316L奥氏体不锈钢,而超级双相不锈钢具有的耐腐蚀性,再一些介质中,如醋酸,甲酸等甚至可以取代高合金奥氏体不锈钢,乃至耐蚀合金。
(4)具有良好的耐局部腐蚀性能,与合金含量相当的奥氏体不锈钢相比,它的耐磨损腐蚀和疲劳腐蚀性能都优于奥氏体不锈钢。
(5)比奥氏体不锈钢的线膨胀系数低,和碳钢接近,适合与碳钢连接,具有重要的工程意义,如生产复合板或衬里等。
(6)不论在动载或静载条件下,比奥氏体不锈钢具有更高的能量吸收能力,这对结构件应付突发事故如冲撞,爆炸等,双相不锈钢优势明显,有实际应用价值。
与奥氏体不锈钢相比,双相不锈钢的弱势如下:
(1)应用的普遍性与多面性不如奥氏体不锈钢,例如其使用温度控制在250摄氏度以下。
(2)其塑韧性较奥氏体不锈钢低,冷,热加工工艺和成型性能不如奥氏体不锈钢。
(3)存在中温脆性区,需要严格控制热处理和焊接的工艺制度,以避免有害相的出现,损害性能。
与铁素体不锈钢相比,双相不锈钢的优势如下:
(1)综合力学性能比铁素体不锈钢好,尤其是塑韧性,不象铁素体不锈钢那样对脆性敏感。
(2)除耐应力腐蚀性能外,其他耐局部腐蚀性能都优于铁素体不锈钢。
(3)冷加工工艺性能和冷成型性能远优于铁素体不锈钢。
(4)焊接性能也远优于铁素体不锈钢,一般焊前不需预热,焊后不需热处理。
(5)应用范围较铁素体不锈钢宽。
与铁素体不锈钢相比,双相不锈钢的弱势如下:
合金元素含量高,价格相对高,一般铁素体不含镍。

历史发展

双相不锈钢从20世纪40年代在美国诞生以来,已经发展到第三代。它的主要特点是屈服强度可达400-550MPa,是普通不锈钢的2倍,因此可以节约用材,降低设备制造成本。在抗腐蚀方面,特别是介质环境比较恶劣(如海水,氯离子含量较高)的条件下,双相不锈钢的抗点蚀、缝隙腐蚀、应力腐蚀及腐蚀疲劳性能明显优于普通的奥氏体不锈钢,可以与高合金奥氏体不锈钢媲美。

焊接特点
双相不锈钢其焊接特点如下:
双相不锈钢在正常固溶处理(1020℃~1100℃加热并水冷)后,钢中含有大约50%~60%奥氏体和50%~40%铁素体组织。随着加热温度的提高,两相比例变化并不明显。
双相不锈钢具有良好的低温冲击韧性,如20mm厚的板材横向试样在-80℃时冲击吸收功可达100J以上。在大多数介质中其耐均匀腐蚀性能和耐点腐蚀性能均较好,但要注意,该类钢在低于950℃热处理时,由于σ相的析出,其耐应力腐蚀性能将显著变坏。由于该钢Cr当量与Ni当量比值适当,在高温加热后仍保留有较大量的一次奥氏体组织,又可使二次奥氏体在冷却过程中生成,结果钢中奥氏体相总量不低于30%~40%因而使钢具有良好的耐晶间腐蚀性能。
另外,如前所述,在焊接这种钢时裂纹倾向很低,不须预热和焊后热处理。由于母材中含有较高的N,焊接近缝区不会形成单相铁素体区,奥氏体含量一般不低于30%。适用的焊接方法有钨极氩弧焊和焊条电弧焊等,一般为了防止近缝区晶粒粗化,施焊时,应尽量使用低的线能量焊接。

 经过几十年的研制和开发,双相不锈钢因其的耐点蚀性能和力学性能越来越多地代替304L、316L不锈钢应用于石油化工、造纸、能源以及油、气等工业领域中。通常来说,除了在极端介质环境中(如304不锈钢处于煮沸的硝酸溶液中)不锈钢会发生全面腐蚀,不锈钢的腐蚀类型都为局部腐蚀。双相不锈钢在含氯介质中发生的腐蚀类型为局部腐蚀,常见也是多的是点蚀。

  局部腐蚀是金属与环境接触的表面上发生的破坏,这种破坏局限发生于金属材料表面的特点局部位置,常以点、坑、裂纹、沟槽等形式出现。钝态金属材料常见的腐蚀类型有点蚀、电偶腐蚀、晶间腐蚀、应力腐蚀等。由于局部腐蚀难以预测和预防,往往在没有先兆的情况下发生金属或设备的突然破坏,因此容易造成事故、环境污染甚至人身伤亡的重大问题。各类腐蚀失效事故事例的调查结果表明,局部腐蚀破坏约占80%.另外,双相不锈钢由于其铁素体相和奥氏体相的合金成分存在差异,其在介质中的稳定性也不尽相同,因此双相不锈钢在一定介质环境中还会发生选择性腐蚀。



一般认为,双相不锈钢的相平衡比例为30%~70%的铁素体比奥氏体时,可以获得良好的性能。但双相不锈钢常常被认为是铁素体和奥氏体大致各占一半,在目前的商品化生产中,为了获得佳的韧性和加工特性,倾向于奥氏体的比例稍大一些。主要的合金元素尤其是铬、钼、氮和镍之间的相互作用是非常复杂的。为了获得稳定的有利于加工和制造的双相组织,注意使每种元素有适当的含量。

除了相平衡以外,有关双相不锈钢及其化学组成的第二个主要问题是温度升高时有害金属间相的形成。高铬高钼不锈钢中形成σ相和x相,并在铁素体相内析出,氮的添加大大延迟了这些相的形成。因此在固溶体中你持足够量的氮是很重要的。随着双相不锈钢制造经验的增加,控制窄的成分范围的重要性变得越来越明显。

耐碱腐蚀

双相不锈钢的高含铬量和铁素体相的存在使其在碱性介质中具有良好的性能。在中等温度下,其腐蚀速度低于标准奥氏体不锈钢的腐蚀速度。

耐点蚀和缝隙腐蚀

需要先了解的概念:

1)在特殊的氯化物环境中,每一种不锈钢都可用一个温度来描述其特征,此温度点蚀开始出现,并且24 小时之内可发展成肉眼可见的大小。低于此温度则在无限长的时间内不会产生点蚀。这一温度即所谓的临界点蚀温度(CPT),对于不同牌号的 CPT 通常以一个温度范围来表示。

2)缝隙腐蚀也有一个类似的临界温度称为临界缝隙腐蚀温度(CCT)。CCT与不锈钢不同试样、氯化物环境和缝隙的特性(紧度,长度等)有关。

双相不锈钢中的高铬、钼和氮使其在水的环境中具有非常好的耐氯化物局部腐蚀性能。在这方面,即使是极低合金化的双相不锈钢牌号也大大优于316型不锈钢。根据合金含量,一些双相不锈钢牌号甚至路身于不锈钢的行列。由于双相不锈钢的铬含量相对高,从而具有高耐蚀性而且非常经济。

图7给出了按照 ASTM G 48 (6%FeCl;)测定的一些不锈钢在固溶处理状态下的耐点蚀和缝隙腐蚀性能的比较。材料焊接态的临界温度要低一些。较高的临界点蚀或缝隙腐蚀温度表明该钢对这种类型腐蚀源具有较大的抗力。2205 钢的CPT和 CCT 都大大316 型钢。这使2205钢成为有多方面用途的材料,例如用在由于蒸发而使氯化物浓缩的环境,像在热交换器的蒸汽空间或隔热层的下面。2205 钢的CPT还表明它可用在碱水和脱气盐水中。它还成功地用于脱气海水中,在这些应用中,通过高流速的海水或用其他方法使钢的表面没有沉积物。在苛刻的应用中,如薄壁热交换器管,或表面有沉积物或有缝隙时,2205钢在海水中则没有足够的耐缝隙腐蚀能力。然而,比2205钢具有更高CCT的高合金化双相不锈钢,如超级双相不锈钢,已经在许多苛刻的海水条件下使用,在这些环境下,既需要钢的强度又要有耐氯化物的能力。

下一条:04Cr19Ni9Cu不锈钢冷镦工艺流程
苏州华旷冶金科技有限公司为你提供的“X2CrNiN22-2耐腐蚀双相不锈钢亮面线软白线”详细介绍
苏州华旷冶金科技有限公司
主营:冷镦高温合金钢,软磁电磁阀 研磨棒,气阀钢80A-751,冷镦草酸线 医用精线
联系卖家 进入商铺

EN10088-3耐腐蚀双相不锈钢盘条信息

最新信息推荐

进店 拨打电话 微信