遵义人脸识别情绪分析系统,人脸识别分析-智能识别系统
-
面议
人脸图像匹配与识别:提取的人脸图像的特征数据与数据库中存储的特征模板进行搜索匹配,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输出。人脸识别就是将待识别的人脸特征与已得到的人脸特征模板进行比较,根据相似程度对人脸的身份信息进行判断。这一过程又分为两类:一类是确认,是一对一进行图像比较的过程,另一类是辨认,是一对多进行图像匹配对比的过程。
人脸识别需要积累采集到的大量人脸图像相关的数据,用来验证算法,不断提高识别准确性,这些数据诸如A Neural Network Face Recognition Assignment(神经网络人脸识别数据)、orl人脸数据库、麻省理工学院生物和计算学习中心人脸识别数据库、埃塞克斯大学计算机与电子工程学院人脸识别数据等。
人脸的外形很不稳定,人可以通过脸部的变化产生很多表情,而在不同观察角度,人脸的视觉图像也相差很大,另外,人脸识别还受光照条件(例如白天和夜晚,室内和室外等)、人脸的很多遮盖物(例如口罩、墨镜、头发、胡须等)、年龄等多方面因素的影响。
如计算机登录、电子政务和电子商务。在电子商务中交易全部在网上完成,电子政务中的很多审批流程也都搬到了网上。而当前,交易或者审批的授权都是靠密码来实现,如果密码被盗,就无法安全。但是使用生物特征,就可以做到当事人在网上的数字身份和真实身份统一,从而大大增加电子商务和电子政务系统的可靠性。
情绪是综合了人的感觉、思想和行为的一种状态,在人与人的交流中发挥着重要作用。情绪是一种综合了人的感觉、思想和行为的状态,它包括人对外界或自身刺激的心理反应, 包括伴随这种心理反应 的 生 理反应。在 人 们 的 日 常工作和生活中,情绪的作用无处不在。在医疗护理中,如果能够知道患者、特别是有表达障碍的患者的情绪状态,就可以根据患者的情绪做出不同的护理措施,提高护理 量。在产品开发过程中,如 果能够识别出用户使用产品过程中的情绪状态,了解用户体验,就 可 以 改 善 产 品 功 能,设 计 出 更 适 合 用户需求的产品。在各种人-机交互系统里,如果系统能识别出人的情绪状态,人与机器的交互就会变得更加友好和自然。因此,对情绪进行分析和识别是神经科学、心理学、认知科学、计算机科学和人工智能等领域的一项重要的交叉学科研究课题。
基于生理信号的情绪识别方法,主要包括基于自主神经系统( autonomic nervous system) 的情绪 识别和 基 于 中 枢 神 经 系 统( central nervous system) 的情绪识别。基于自主神经系统的识别方法是指通过测量心率、皮 肤 阻 抗、呼吸等生理信号来识别对应的情绪状态。美国麻省理工学院的 Picard 等人通过对人体自主神经系统的测量和分析,识别出了平静、生气、厌恶、忧伤、愉悦、浪漫、开心和畏惧等 8 种不同的情绪[20]。这些自主神经系统的生理信号虽然无法伪装,能 够 得 到 真 实 的 数 据,但 是 由 于 准 确率低且缺乏合理的评价标准,因此不太适合于实际应用。基于神经系统的识别方法,是指通过分析不同情绪状态下大脑发出的不同信号来识别相应的情绪。这种方法不易被伪装,并且与其他生理信号识别方法相比识别率较高,因此越来越多的被应用于情绪 识 别 研 究 [1]。