传感器胶,碳化硅切片胶
-
面议
前30 min顶部沉积速率的异常下降是由于预处理后时间过
长造成的。在电化学反应之前铜离⼦和添加剂分⼦的充分扩
散导致在初始阶段相对较快的沉积。随着反应的进⾏,电解
液中的铜离⼦从阴极接受电⼦并不断转化为铜。随着纵横比
的增加,铜离⼦向底部的扩散速率降低。铜离⼦的传质限制
降低了沉积到底部的速率。同时,铜离⼦在顶部的积累提⾼
了沉积速率。逐渐地,顶部的电沉积速率超过底部的电沉积
速率,终导致接缝缺陷。
在电沉积⼯艺之前,对 TSV 芯片进⾏预处理以排除通孔中的
空⽓并润湿种⼦层。,将 TSV 芯片放⼊吸瓶中并浸⼊去
离⼦⽔中。然后,使用⽔循环泵将抽吸瓶抽空⾄负⽓氛。在
负压下,通孔中的空⽓被推⼊样品片表面。此外,应用间歇
性超声振动去除表面⽓泡,直⾄⽆⽓泡出现,表明预处理完
成。因此,TSV芯片迅速移动到电镀槽中并保持静⽌⾜够长
的时间以确保电镀溶液在通孔内充分扩散。
电沉积程序
预处理后,在不同的电流密度(4 mA/cm 2、5 mA/cm 2、7
mA/cm 2、10 mA/cm 2和15 mA/cm 2 )下进⾏电化学沉积
(ECD)⼯艺) 在的时间段内。低电流密度条件(4 mA/cm 2)
和中等电流密度条件(7 mA/cm 2 )的电沉积间隔分别为30
min和10 min。
深硅刻蚀设备
通常情况下,制造硅通孔(经常穿透多层⾦属和绝缘材料)采用深反 应离⼦刻蚀
技术(DRIE),常用的深硅刻蚀技术又称为“Bosch(博⽒)” ⼯艺,有初发明该项
技术的公司命名。 如下图所示,⼀个标准Bosch⼯艺循环包括选择性刻蚀和钝
化两个步 骤,其中选择性刻蚀过程采用的是SF6和O2两种⽓体,钝化过程采用
的是 C4F8⽓体。在Bosch⼯艺过程中,利用SF6等离⼦体刻蚀硅衬底,接
着利用C4F8等离⼦体作为钝化物沉积在硅衬底上,在这些⽓体中加⼊O2 等离
⼦体,能够有效控制刻蚀速率与选择性。因此,在Bosch刻蚀过程中 很自然地
形成了⻉壳状的刻蚀侧壁。
嵌⼊式玻璃扇出与集成天线封装
玻璃通孔还可以在玻璃上制作空腔,进⽽为芯片的封装提供⼀种嵌⼊ 式玻璃扇
出(eGFO)的新⽅案。2017年乔治亚理⼯率先实现了用于⾼I/O 密度和⾼频多芯
片集成的玻璃面板扇出封装。该技术在70um厚、⼤小为 300mm*300mm的玻璃
面板上完成了26个芯片的扇出封装,并有效的控 制芯片的偏移和翘曲。2020年
云天半导体采用嵌⼊式玻璃扇出技术开了 77GHz汽⻋雷达芯片的封装,并在此
基础上提出了⼀种⾼性能的天线封装 (AiP)⽅案。
基于玻璃通孔的MEMS封装
2013年,LEE等利用玻璃穿孔技术实现射频MEMS器件的晶圆级封装, 采用电
镀⽅案实现通孔的完全填充,通过该⽅案制作的射频MEMS器件在 20GHz时具
有0.197dB的低插⼊损耗和20.032dB的⾼返回损耗。2018年, LAAKSO等创造性
地使用磁辅助组装的⽅式来填充玻璃通孔,并用于 MEMS器件的封装中。