莆田车牌识别价格表
-
面议
字符识别方法目前主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法将分割后的字符二值化,并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,后选佳匹配作为结果。基于人工神经元网络的算法有两种:一种是先对待识别字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把待处理图像输入网络,由网络自动实现特征提取直至识别出结果。
一个车牌识别系统是否实用,重要的指标是识别率。国际交通技术作过的识别率指标论述,要求是24小时全天候全牌正确识别率85%~95%。信路通的车牌识别系统在实际应用中已经达到了全牌正确识别率90%以上。为了测试一个车牌识别系统识别率,需要将该系统安装在一个实际应用环境中,全天候运行24小时以上,采集至少1000辆自然车流通行时的车牌照进行识别,并且需要将车辆牌照图像和识别结果存储下来,以便调取查看。然后,还需要得到实际通过的车辆图像以及正确的人工识别结果。
一个车牌识别系统的后台管理体系,决定了这个车牌识别系统是否好用。清楚地认识到重要的一点是识别率达到是不可能的,因为车牌照污损、模糊、遮挡,或者天气也许很糟(下雪﹑冰雹﹑大雾等等)。后台管理体系的功能应该包括:
1、识别结果和车辆图像数据的可靠存储,当多功能的系统操作使得网络出差错时能保护图像数据不会丢失,同时便于事后人工排查;
2、有效的自动比对和查询技术,被识别的车牌照号码要同数据库中成千上万的车牌号码自动比对和提示报警,如果车牌照号码没有被正确读取时就要采用模糊查询技术才能得出相对“佳”的比对结果;
3、一个好的车牌识别系统对于联网运行,还需要提供实时通信、网络安全、远程维护、动态数据交互、数据库自动更新、硬件参数设置、系统故障诊断。
交通监管部门每天都要处理大量的违章车辆图片,一般由人工辨识车牌号码再输入管理系统,这种方式工作量大、容易疲劳误判。采用自动识别可以减少工作强度能够大幅度提高处理速度和效率。这种功能可用于电子警察系统、道路监控系统等。
车牌识别系统在停车场中能够起到很大的作用,有助于推动停车场收入,特别是对丁一些机动型用户来说,能够随时释放山停车位,加大停车的梳动量。基丁停车场的车牌识别系统是一个基于视频监控和门禁系统合二为一的平台。该平台不仅允许终端用户查看视频信息,也可以让他们拉制摄像头,让系统抓拍到车牌信息后方可进入停车,停车费用明细可Web访问获取信息。
车牌识别系统还是一个非常注重环保的管理系统,无纸票、无卡片,纯粹使用车牌识别,人力和设备成本都大大减少了。无票停车系统提供了一个完整的友好的用户体验方式,不再使用停车票据,也避免了出入口交通阻塞的可能。这种商业模式正在由解决方案提供商向大中型停车场所提供。停车场管理人员可实行外聘制,所需缴纳的管理费技照收入的百分比进行交换。一旦车牌自动识别停车场管理系统能够普及,成本将不会是压力。