武邑县新型超塑性镁合金新型超塑性镁合厂家
-
¥120.00
镁合金作为轻的金属结构材料,在航空航天、武器装备、汽车、3C电子等领域具有的应用潜力。低的室温塑性一直是限制镁合金广泛应用的主要阻碍之一。HCP结构提供了有限数量的可激活的滑移系统,并且只有两个立的基面滑移系统易于激活,远不能满足Von Mises/Taylor准则。获得超细晶 (约1 μm及以下) 是提高镁及其合金室温塑性的重要手段,然而获得超细晶往往需要特殊的设备和工艺,限制了广泛推广应用。
近些年,镁合金作为轻的结构金属材料,在航空航天、汽车、电子通讯等领域具有显著的轻量化潜力,应用前景十分广阔,受到广泛关注。然而,镁合金为密排六方结构,可开启的滑移系有限,导致室温塑性低、成形性差。近年来,大量研究工作基于合金化和加工方法,通过细化晶粒、弱化基面织构、促进非基面滑移开启、减轻或消除各向异性等策略,显著提升了镁合金的塑性。大量研究结果表明合理的选择合金化元素可调控第二相的种类和含量,采用合适的热机械加工可有效调控第二相的尺寸和分布,为高强塑性镁合金的可控制备奠定了基础。
合金化是提升镁合金塑性的有效方法,起到细化晶粒、弱化强基面织构、强化基面滑移、开启非基面滑移、诱导孪生的作用。大量研究表明通过添加稀土元素(RE),如Y、Nd、Ce、Gd和Ab等,能够有效地弱化织构,提升室温塑性。如图1所示,Mg-0.2Ce合金延伸率高达~38%,Mg-1.6Zn-0.5Gd合金延伸率达到~30%。基于滑移基线分析,Gd和Y元素的加入有助于开启非基面滑移,起到协调晶粒c轴应变的作用,满足Von Mises原则,即满足开启塑性变形的基本条件:存在至少五个立的滑移系。透射(TEM)分析进一步表明,Gd和Y元素有助于促进非基面滑移,使晶粒发生旋转并取向随机,起到弱化基面织构的作用。基于多晶弹塑性模型,Mg-1Y合金中非基面滑移的开启将影响织构演变,形成沿RD方向倾斜的双峰织构。
现在人们也认识到,ECAP加工在AZ31合金中产生了的超塑性性能,分析表明晶界滑动可能是控制速率的机制。
实际上,AZ31合金是一种单相镁合金,预计在高温超塑性变形过程中,第二相的缺失将导致动态晶粒长大。近的一项分析证明了在镁合金中保持非常小的晶粒尺寸对于超塑性流动的重要性。
镁(Mg)合金由于其固有的低密度和高比强度,是有前途的轻质结构材料,特别是在交通运输和航空航天领域。大多数高强度镁合金在室温下表现出较差的成形性和延展性,这限制了它们的广泛应用。通过适当的合金化设计和/或精细的微观结构控制,一些新开发的镁合金包括稀土 (RE) 和不含稀土的镁合金,在不显著降低强度的情况下表现出增强的延展性。本文为了找出其中的关键原因,从合金化设计策略和加工技术的微观结构控制等方面回顾了近期关于韧性镁合金的研究。在这篇综述中,本文从合金化设计策略和通过加工技术进行的微观结构控制方面回顾了具有增强延展性的镁合金的新发展。它可以通过适当的合金化设计与智能微结构控制相结合,为制造具有增强的成形性和延展性的镁合金提供见解。
对于大多数镁合金来说,仍然难以实现高强度-塑性协同作用。为了克服权衡困境,一种方法是通过精心设计合金和定制加工路线来提高溶质原子的有效性,例如通过增加冷却速度和/或压力形成过饱和固溶体。过饱和固溶体中过多的溶质原子不仅可以产生额外的固溶强化以提高强度,而且还可以协同强化软模和/或促进非基底滑移的激活以提高延展性。而且,通过使用改进的和/或新颖的工艺路线来设计和控制所产生的微结构是至关重要的。实际上,近的各种研究进展表明,引入多峰/双峰、梯度/层状异质结构、在超细晶结构中形成致密的纳米级析出物/团簇和纳米孪晶对于实现强度-延展性协同作用是有效的。在包括镁及其合金在内的金属材料中。