湘西供应导热镁合金材料高导热镁合金型材
-
¥118.00
高导热镁合金型材是一种新型的轻质材料,具有的导热性和机械性能,被广泛应用于各个领域。GB/T38714-2020《高导热镁合金型材》为高导热镁合金型材的生产和应用提供了技术规范。
高导热镁合金型材的主要特点是导热系数高、密度低、机械强度高、成形性好等。这些特点使得高导热镁合金型材非常适合用于制造各种设备和工具。例如,在电子产品制造中,高导热镁合金型材可以用于散热器、散热片等部件,有效降低了电子产品的温度,延长了使用寿命。
此外,高导热镁合金型材还可以用于汽车制造中的发动机舱盖、底板等部位,可以提高汽车发动机的效率和安全性。在工业生产中,高导热镁合金型材还可以用于制造航空航天设备、化工设备、军事装备等重要领域。
GB/T38714-2020标准规定了高导热镁合金型材的化学成分、力学性能、表面质量等指标要求,为高导热镁合金型材的应用提供了技术保障。在生产过程中,需要严格控制合金的化学成分和加工工艺,以确保高导热镁合金型材具有的机械性能和导热性能。
总之,高导热镁合金型材GB/T38714-2020在工业生产中的应用非常广泛,具有的市场潜力。未来随着科技的不断进步,高导热镁合金型材的性能将会更加,应用范围也将进一步拓展。
同铝合金一样,镁合金铸锭也常常显现裂纹,不过镁合金的裂纹敏感性比铝合金的轻得多,型式也有较大差别,也可以分为热裂纹与冷裂纹,不过镁合金的冷裂纹相当少见,仅在MB5和MB7合金锭中偶尔出现,因此镁合金的热裂纹废品量占95%以上。
热裂纹
铸锭在有效结晶区间形成的裂纹称热裂纹。在结晶区间内收缩困难是产生热裂纹的主要原因。合金在给定条件下,凡是能缩小脆性区温度范围、减少脆性区内收缩困难的因素都可以减小热裂纹敏感性。
合金热裂纹敏感性高低可根据其脆性区内塑性A和线收缩ε的大小判断,即根据温度-塑性图可判断合金敏感性。还A大于0.5%的几乎不产生热裂纹。而当A=0时则称之为脆性区,这时产生热裂纹的几率可以说是了。合金脆性的上限≤固液区的上限,而其下限则≤固液区的下限。
对镁合金热裂纹敏感性有影响的主要因素:合金成分与工艺因素。
化学成分
实验证明,凡是能细化晶粒的因素都能降低合金脆性区的上限,也就是可以缩小脆性的温度范围。因为晶粒越细,则越有利于晶间变形,减少结晶时的收缩阻力,裂纹就不会产生了。例如向Mg+4.5%Zn合金添加0.8%Zr,其固相线由344℃提高到550℃,脆性区缩小了206℃,同时还降低了固液区内的线收缩和提高了固液区的塑性,这三者都有利于消除热裂纹。
另外,凡是增大共晶量的组元,都会提高合金的固液区内的塑性。因为增大共晶量,可增大晶界液膜厚度,从而有利于晶界变形,将大大改善补缩条件和裂纹“修复”条件,不但热裂数量减少,而且程度也显著减轻。
共晶量和裂纹敏感性并不是呈线性关系,当共晶量小于其一极限值时,裂纹倾向性小,当增加到某一值后,敏感性骤升,再继续加大共晶量,则敏感性又下降,一直到零。
镁及镁合金熔体易与氧、氮、水气等发生反应,镁与1g氧化合释放598J热,而铝释放的为531J,比镁释放的低11.2%。通常,氧化物生成热越大,分解压越低,则与氧的亲和力越强。由氧化物生成热和分解压数值可知,镁与氧的亲和力比铝与氧的大,镁与氧的氧化膜MgO疏松,致密度系数α=0.79,比Al2O3的1∶28小得多,没有保护作用。温度较低时,镁的氧化速率不大,500℃时显著加快,超过700℃则急剧上升,熔体一旦遇氧就会发生急剧氧化而燃烧,放出大量的热。反热生成的MgO绝热性能好,反应界面产生的热不能及时向外散发,从而提高界面温度,造成恶性循环加速镁的氧化,燃烧反应更加激烈。当界面反应温度镁的沸点1107℃时,熔体大量气化,发生爆炸。
无论是固态镁还是液态镁均能与水发生反应,生成MgO并放出H2,H2又与O2化合生成水,水又受热急剧汽化,会导致猛烈的爆炸。因此,熔炼镁合金的炉料、工具、熔剂等均应干燥。
镁可与N2反应生成Mg3N2,不过Mg-N2反应比Mg-O2反应缓慢得多。镁与氩、氦、氖等不发生化学反应,可防止镁熔体燃烧,但不能阻止镁的蒸发。因此,在熔炼镁合金时采取有效的措施防止其氧化、燃烧与爆炸,目前的措施有熔剂熔炼工艺与无熔剂熔炼工艺。然而熔剂形成的膜层隔绝空气的效果并不十分理想。