江西543nm激光器紫外激光器
-
¥35000.00
激光功率计
激光功率和功率稳定性测量-功率计 激光功率计用于测量激光功率和稳定性。我公司制作的激光功率测量仪器,具有测试准确、使用便捷等特点,充分满足客户对激光功率测量和分析的实际需求。被广泛应用于科研、教学、医疗、工业等各个领域。 使用激光功率计时,所测功率不可超出功率计量程。 适用范围 Applicability CW laser 光谱测量范围 Spectrum response range 200nm ~ 2500nm 量程 Measurement range 0~2W/5W/10W/20W/50W/100W 探头敏感面积 Sensitive area of detector Φ10mm 大可承受能量密度Max permitted power density 200W 测量误差 Measurement error <±5% 显示位数 Display precision 4 and 1/2 bits 工作电压 Input voltage AC 80~260V 50Hz 消耗功率 Power consumption <10W 保修期 Warranty Time 1 year
绿光激光器
绿光激光器包括半导体泵浦全固态绿光激光器和半导体绿光激光器,采用原装进口泵浦源,激光头自带制冷和控温系统,电源自带过流、过热保护功能。激光器具有功率稳定、操作简单、性能可靠、使用寿命长等特点,该系列 绿光激光器产品包括高能量绿光激光器、高功率绿光激光器、高稳定性绿光激光器、低噪声绿光激光器、单纵模绿光激光器五个系列,可自由空间输出、光纤耦合(单模光纤、多模光纤、匀化光纤)输出。
低噪声激光器
低噪声激光器 激光器的噪声是由于激光谐振腔内存在着模式竞争,导致输出功率的高频抖动。通过对激光器的谐振腔及其他元件进行特殊的设计,可以有效降低激光振幅噪声,使其满足DNA测序、细胞分拣、频谱分析、干涉测量、激光全息、照片冲印及生物医疗等领域的应用要求。 532nm-低噪声激光器 1~300mW 500~4000mW 5000~10000mW 633nm低噪声红光激光器 1~10mW 635nm低噪声红光激光器 1~200mW 1~1000mW 639nm红光低噪声激光器 1~1000mW 1000~1500mW 640窄线宽低噪声红光激光器 1~30mW 1~200mW 1~1000mW 1~1500mW 642nm低噪声红光激光器 1~200mW 650nm低噪声红光激光器 1~180mW 1~1000mW 655nm低噪声红光激光器 1~180mW 1~1000mW 660nm低噪声红光激光器 1~180mW 1~1000mW 1064nm-低噪声激光器 1~500mW
多波长激光器
波长范围从375nm到2200nm
SMA-FC-FC-PC接头是多模光纤跳线的选择
VD-I VD-III-LB电源
多波长光纤耦合激光器
参数 指标
可提供波长(nm) 375-2200
输出方式 光纤输出
光纤芯径(μm) 50, 1 600,
光纤连接器 SMA905
功率稳定性(rms, 4小时) <1% <3%, <5%
工作模式 连续, TTL调制或模拟调制可选
工作温度(℃) 10~35
尺寸 101X144X93
供电电压 24VDC 1-10A
制冷方式 风冷
储存温度 (℃) -20~80
使用寿命(小时) 10000
流式细胞术基础知识
流式细胞仪是一种可以计算血液样本中各种细胞类型数量的仪器。为了实现这一点,血液样本被浓缩,然后用多种荧光染料的混合物处理。每种荧光染料都能够和细胞表面的特定靶蛋白相结合,通过处理后的细胞会被放入流式细胞仪,通过一个喷嘴装置,使细胞被排成一列移动。
当细胞被输送到激光作用区后,一束或多束不同颜色的激光会聚焦在细胞上,每种荧光染料会在不同的波长被激发,产生与之对应的荧光和散射,仪器则会通过这种方式来识别各种细胞。
光学器件会收集荧光信号并使用带通滤波器将其分离到波长箱中,并使用检测器(光电倍增管或雪崩光电二极管)来定量测量光信号。
常规的流式细胞仪通常会含有多达四个激光波长和十个个检测器。新的仪器则会包含多达9个激光波长以及60个检测器。 两种仪器的效率都很高,通常每秒能够分析数百个细胞。
流式细胞仪简易原理多维细胞术的挑战
荧光信号的波长总是比激光激发的波长要长(斯托克斯位移)。这种偏移允许使用带通滤波器和截止滤波器的组合有效地将荧光与散射激光分离。理轮上我们可以通过在激发曲线的峰值位置处去激发荧光染料,以此来达到大的信噪比。在多维流式细胞术的应用中,试剂组通常由多种荧光染料组成,这些荧光染料经过精心挑选,以确保它们都具有不同的激发和荧光光谱。这对于使仪器能够分离信号并由此确定每个细胞附着多少荧光染料至关重要,这反过来又使仪器能够明确的确定它是什么类型的细胞。
然而,问题和挑战在于激发光谱和荧光发射光谱都非常宽且具有长尾,因此彼此间不可避免地会出现一些串扰,每种细胞类型表达多少特定蛋白质也存在着自然差异。 仪器设计师们的任务是将终数据中的串扰和变异系数 (CV) 降至低。
公认的方法(见上图)涉及交错激发波长和荧光检测窗口。每个检测窗口中的信号相互绘制以产生“散点图”。在寻找已知和新细胞类型的研究应用中,这些图通常是相互杂糅的。在临床实验室中,大量的测试使这种监督分析变得不切实际,而是使用多变量计算机分析来自动确定每个细胞的身份。