百色导热镁合金材料高导热镁合金型材
-
¥118.00
镁合金的熔炼铸造工艺与铸锭品质对镁材质量、成品率高低攸攸相关,实践统计证明,镁材缺陷的75%以上都或多或少是由于铸锭带来的。镁合金锭的铸造的铸造工艺有:铁模铸造,水冷模铸造与半连续铸造。前两种工艺现在很少用了,所生产的锭坯还不到总数的5%。半连续铸造法的优点可概括为:
凝固速度快,改善了铸锭组织,减少了成分偏析,提高了锭坯的力学性能。
由于改善了熔铸系统,减少了氧化夹杂及其他非金属夹杂物,金属杂质含量也有所下降,合金纯净得到了很大提高。熔铸设备对MA8合金的纯净度也有一定的影响。
合理的结晶顺序,铸锭的致密度得到提高,锭中心的疏松大幅度地下降。
锭的长度有很大提高,切头、切尾等几何废料的相对量有很大减小。
实现了机械化或甚至半自动化生产,劳动条件得到很大改善,劳动生产率显著提高,产品品质也有很大提高。
当然,尽管半连续铸造法的优点很多,不可避免地也会存在一些不足之处,诸如:
铸锭内部因凝固速度快,会产生很大的内应力,而合金的塑性又不大,因而裂纹倾向性大,废品率比铁模铸造时的大得多,铁模铸造几乎无一裂纹。
由于凝固速度快,有些合金元素如锰会产生较严重的晶内偏析,为了消除这种缺陷,须进行长时间的均匀化退火,因而生产成本上升,而且性能得不到充分的。
由于凝固速度大,液穴内的温度梯度也会相应地上升,虽不利于金属中间化合物颗料的过于长大,但却使它易于产生。
镁及镁合金熔体易与氧、氮、水气等发生反应,镁与1g氧化合释放598J热,而铝释放的为531J,比镁释放的低11.2%。通常,氧化物生成热越大,分解压越低,则与氧的亲和力越强。由氧化物生成热和分解压数值可知,镁与氧的亲和力比铝与氧的大,镁与氧的氧化膜MgO疏松,致密度系数α=0.79,比Al2O3的1∶28小得多,没有保护作用。温度较低时,镁的氧化速率不大,500℃时显著加快,超过700℃则急剧上升,熔体一旦遇氧就会发生急剧氧化而燃烧,放出大量的热。反热生成的MgO绝热性能好,反应界面产生的热不能及时向外散发,从而提高界面温度,造成恶性循环加速镁的氧化,燃烧反应更加激烈。当界面反应温度镁的沸点1107℃时,熔体大量气化,发生爆炸。
无论是固态镁还是液态镁均能与水发生反应,生成MgO并放出H2,H2又与O2化合生成水,水又受热急剧汽化,会导致猛烈的爆炸。因此,熔炼镁合金的炉料、工具、熔剂等均应干燥。
镁可与N2反应生成Mg3N2,不过Mg-N2反应比Mg-O2反应缓慢得多。镁与氩、氦、氖等不发生化学反应,可防止镁熔体燃烧,但不能阻止镁的蒸发。因此,在熔炼镁合金时采取有效的措施防止其氧化、燃烧与爆炸,目前的措施有熔剂熔炼工艺与无熔剂熔炼工艺。然而熔剂形成的膜层隔绝空气的效果并不十分理想。
镁合金零件早期采用金属型重力铸造,经研究发现,由于镁合金的熔点低、密度低,大多数合金的流动性比较好,且比热容低,容易获得较高的冷速,因而在适中的压力下可以获得理想的铸件。根据相关报道,奥迪某款车型的镁合金仪表板横梁,在装有自动浇注机构的锁模力为24.5MN的冷室压铸机上成功实现压铸,因此本文介绍的镁合金仪表板横梁采用冷室压铸是完全可行的。
针对仪表板横梁的结构性能要求,结合AM60B的疲劳性能对内在缺陷非常敏感的特点,仪表板横梁的压铸工艺过程中要求压铸过程充型平稳,实现顺序凝固,避免各种铸造缺陷的发生。这样才能在得到缺陷少、品质高的铸件的同时,提高生产效率,也为实现新材料在仪表板横梁上应用奠定了工艺基础。