乌海回收苯乙醇多少钱
-
面议
植物油含有甘油酯,甘油酯在碱性条件下会发生水解反应,生成脂肪酸钠和甘油,这些反应生成物溶于水,因而其反应后的溶液是透明的。而矿物油不能发生皂化反应也不溶于水,所以含有矿物油的植物油经皂化反应后溶液仍然浑浊、有油珠析出。根据皂化反应后溶液是否浑浊来判断植物油中是否含有矿物油,其成本低、仪器简单且适合在试验室操作。但操作比较繁琐,油脂低检出限为0.5%,灵敏度较低且易产生测定误差,尤其当油脂中1%~3%的组分不能被皂化时,误差会更加严重。在皂化法测定过程中若用乙醚作为提取剂,则能够有效降低误差,防止判定皂化结果时阴性样品产生浑浊现象,检出限也会有所增加。
由于皂化法的试验结果误差较大且容易产生假阳性,误导试验结果,因而采用二次皂化法来解决这些问题。二次皂化法是在皂化法的基础上进行的,该方法将皂化法中的可疑物再经石油醚多次浓缩提取以进一步提高矿物油的含量,此后按照皂化法的方法进行操作,根据皂化反应后溶液是否浑浊来判断是否存在矿物油。这种方法与皂化法相比,度和准确度都会进一步提高,更能避免假阳性的产生。
由于气相色谱的氢火焰离子化检测器(FID)准确度高、重复性好,因而在测定食品中矿物油时经常采用这种检测器,但是这种方法的缺点是选择性和灵敏性较差,检出限较高,这就意味着只有在矿物油的含量达到一定的程度时才能被检测到,如果矿物油含量较少可能被检测不到。因此人们常常通过各种方法来预处理样品以提高矿物油的富集能力。液相色谱-气相色谱-氢火焰离子化器检测法(HPLC-GC-FID)是目前应用较多的方法,但因其价格昂贵,维修成本高,仅有少量的实验室拥有这样的设备。
为了弥补一维气相色谱法的一些缺点,近年来在食品中矿物油的检测中逐渐使用二维气相色谱法。该方法能够将矿物油中的组分分离得更加,不仅仅可以将MOSH与MOAH进行分离,还能按照MOSH中的结构及MOAH中的环数将矿物油分离,经过此次分离后便可以对矿物油的污染来源进行一系列分析。
GC×GC的维分离通常根据沸点的差异而进行非极性固定相的分离;第二维则使用极性柱对相同沸点的矿物油进行进一步的分离,利用该方法便可以对食物中矿物油进行测定。
从矿物油的杀虫作用机理可以看出,与化学合成农药相比,其杀虫作用具有以下特点:
广谱性
矿物油对多种作物害虫有效,且适用于不同季节的害虫防杀,因此具有广泛适用性。
极低毒性
矿物油来源于石油,与化学合成农药相比,在常态下几乎无化学变化,故其生物毒性远低于化学农药,甚至。
低用量和低残留
基于成膜窒息作用的杀虫机理,极薄的矿物油膜即可达到目的,因此用量低,残留低。
长效性
矿物油膜对害虫的全生命周期均有效,且可阻止初卵孵化及若虫移动,故持效性长。
无抗药性
化学杀虫剂在使用过程中的一个问题就是害虫产生抗药性的间隔越来越短,使药剂失去效力;而矿物油是基于物理杀虫作用,害虫对其不会产生抗性。
矿物油理化性能与农业生产的关系传统意义上的矿物油是指从石油中经过适当工艺提炼出来的液态烃类混合物,其基本理化性能一般包括:组成、馏程、密度、运动黏度、闪点、杂质含量等。在农业生产中,矿物油的各项性能指标从不同方面对作物产生影响。
矿物油的组成表征有2种形式,即族组成和结构组成。其中:族组成包括链烷烃、环烷烃和芳烃;结构组成则以CA(芳烃碳原子占总碳原子的百分数)、CN(环烷烃碳原子占总碳原子的百分数)、CP(链烷烃碳原子占总碳原子的百分数)表征。 [4]
闪点、凝固点、 密度等其他理化性能是油品本身的安全及使用性能要求。有机农业对矿物油理化性能的要求作为有机农业可用农药的矿物油,除需满足杀虫功能外,还要对人、畜、环境安全,满足有机食品生产标准的要求。 [4]
针对矿物油作为农药的不同使用范围,FAO于1971年分别制订了质量控制指标及检测方法。发达国家也对农用矿物油的产品质量设定要求,以确保其使用安全性。随着矿物油精制技术的不断发展,农用矿物油的品质要求也不断提高。
这种方法技术要求简单,仅针对那些应用于器件润滑与生产设备清洗环节的矿物废油,这是由于通常进行设备清洗与器件润滑的作业条件比较封闭,有效污染小,废油中的污染物通常是一些机械磨损废渣与水分,在进行简单过滤和脱色与脱水操作后就可以得到质量较差的基础矿物油,部分废矿物油回收生产单位还将质量较好的矿物油与溶剂混配入处理好的废油中,从而提升回收再生油的品质。