商品详情大图

合肥肥西计量器具第三方量具外校计量检测机构

及时发货 交易保障 卖家承担邮费

商品详情

世通仪器检测服务有限公司,全国有多个实验室(广东,江苏,陕西,河南,重庆,四川,福建等等)均可上门检测,证书带CANS资质,欢迎来电咨询-陈经理EMI测试接收机IF数字化认证级EMI测试接收机符合CISPR 16-1,依据CISPR,EN 550xx,FCC和MIL等标准的电磁干扰测量。适合家电(CISPR 14-1)、照明设备(CISPR 15)的EMI测试。为基于微处理器控制的智能接收机,可以使用控制平台(计算机)软件进行控制,实现自动测试。内置预选器,具有很高的动态范围,能进行的EMC测量。可任意设置、修改不同标准的限值,方法简单且功能完善。
可根据不同的配件选择传导因子仪器自动对数据进行数据处理。
进行扫描粗测,同时测出峰值和平均值的两条曲线;也可单测平均值或峰值的曲线。
仪器可进行终测试,每个频段测出一个大点的准峰值和平均值;也可人为选点进行准峰值和平均值的终测。
对超标的频率点进行自动的准峰值测量,还可以观察单个频率点准峰值的动态变化,直观的图形化能量条显示终端测试电压值,并具有大值保持功能。
仪器可以给出结果的测试报告,报告可以加入测试人员的信息,可以直接打印书面报告也可保存电子版报告,报告可以通过USB口输出,报告格式为通用格式可在在网络上传送。
软件设计更加人性化,可在测试过程中调整上下限值,达到佳的显示效果。还可对任意范围进行放大,更准确地观察测试数据。丰富的帮助信息,帮助使用者对设备的各项功能有更深层的了解。频率分辨率: (9kHz ~ 150kHz):30Hz;(150kHz ~ 30MHz):1kHz
(30MHz ~ 1000MHz) :10kHz
驻波系数:1.3 (RFATT > 10dB)
测试模式 平均值 准峰值 峰值
终端电压测量范围:0dB ~ 120dB(S/N=6dB 1mV=0dB)
终端电压测量误差:(在标准工作状态下)≤±2dB
场强测量范围:在终端电压的范围上加校正:自动
输出方式:
1、具有USB接口、可通过移动硬盘或U盘拷贝出测试数据或测试报告
2、软盘存储
打印和输出、
软件:配有数据读取软件
接口:USB接口
可外配鼠标、键盘和液晶显示器
电源:50Hz 220V
仪器的外形尺寸:420mm×430mm×144mm
主机重量:约14kgEMI测试接收机是集天线与接收机为一体的全自动EMI测试接收机,是进行空间场强测试的重要设备,用以测量空间的无用或有害的相关干扰信号;与此同时,也可以测量空间电台、电视台发出的有用无线电信号的场强。

世通仪器检测服务有限公司,全国有多个实验室(广东,江苏,陕西,河南,重庆,四川,福建等等)均可上门检测,证书带CANS资质,欢迎来电咨询-陈经理数字示波器是数据采集,A/D转换,软件编程等一系列的技术制造出来的示波器。数字示波器一般支持多级菜单,能提供给用户多种选择,多种分析功能。还有一些示波器可以提供存储,实现对波形的保存和处理。 目前数字示波器主要依靠美国技术,对于300MHz带宽之内的示波器,目前国内品牌的示波器在性能上已经可以和国外品牌抗衡,且具有明显的性价比优势。数字示波器,英文:Digital Oscilloscope
数字示波器是设计、制造和维修电子设备不可或缺的工具。随着科技及市场需求的快速发展,工程师们需要好的工具,迅速准确地解决面临的测量挑战。作为工程师的眼睛,数字示波器在迎接当前棘手的测量挑战中至关重要。 [1]
数字示波器因具有波形触发、存储、显示、测量、波形数据分析处理等特优点,其使用日益普及。由于数字示波器与模拟示波器之间存在较大的性能差异,如果使用不当,会产生较大的测量误差,从而影响测试任务。数字存储示波器DSO,Digital Storage Oscilloscope:将信号数字化后再建波形,具有记忆、存储被观测信号的功能,可以用来观测和比较单次过程和非周期现象、低频和慢速信号,以及不同时间不同地点观测到的信号
数字荧光示波器DPO,Digital Phosphor Oscilloscope:通过多层次辉度或彩色可显示长时间内信号的变化情况
混合信号示波器MSO,Mixed Signal Oscilloscope:把数字示波器对信号细节的分析能力和逻辑分析仪多通道定时测量能力组合在一起,可用于分析数模混合信号交互影响带宽
带宽是示波器重要的指标之一。模拟示波器的带宽是一个固定的值,而数字示波器的带宽有模拟带宽和数字实时带宽两种。数字示波器对重复信号采用顺序采样或随机采样技术所能达到的高带宽为示波器的数字实时带宽,数字实时带宽与高数字化频率和波形重建技术因子K相关(数字实时带宽=高数字化速率/K),一般并不作为一项指标直接给出。从两种带宽的定义可以看出,模拟带宽只适合重复周期信号的测量,而数字实时带宽则同时适合重复信号和单次信号的测量。厂家声称示波器的带宽能达到多少兆,实际上指的是模拟带宽,数字实时带宽是要低于这个值的。例如说TEK公司的TES520B的带宽为500MHz,实际上是指其模拟带宽为500MHz,而高数字实时带宽只能达到400MHz远低于模拟带宽。所以在测量单次信号时,一定要参考数字示波器的数字实时带宽,否则会给测量带来意想不到的误差。
带宽选择实例:
已知条件:示波器主机1GHz,探头配置1.5GHz,被测信号200MHz(上升时间500ps)。
示波器上升时间= 0.35/1GHz = 350ps
探头上升时间= 0.35/1.5GHz = 233ps
整个测量系统上升时间=√ ̄350²+233² = 420ps = 420ps
整个测量系统实际带宽= 0.35/420 = 833MHz
实测信号所得上升时间= √ ̄420²+500 = 653ps
实际测量误差= (653 – 500 ) / 500 = 30.6%
采样速率
采样速率是数字示波器的一项重要指标,采样速率也称为数字化速率,是指单位时间内,对模拟输入信号的采样次数,常以MS/s表示。如果采样速率不够,容易出现混迭现象。
如果示波器的输入信号为一个100KHz的正弦信号,示波器显示的信号频率却是50KHz,这是怎么回事呢?这是因为示波器的采样速率太慢,产生了混迭现象。混迭就是屏幕上显示的波形频率低于信号的实际频率,或者即使示波器上的触发指示灯已经亮了,而显示的波形仍不稳定。那么,对于一个未知频率的波形,如何判断所显示的波形是否已经产生混迭呢?可以通过慢慢改变扫速t/div到较快的时基档,看波形的频率参数是否急剧改变,如果是,说明波形混迭已经发生;或者晃动的波形在某个较快的时基档稳定下来,也说明波形混迭已经发生。根据奈奎斯特定理,采样速率至少信号高频成分的2倍才不会发生混迭,如一个500MHz的信号,至少需要1GS/s的采样速率。有如下几种方法可以简单地防止混迭发生:
1.调整扫速;
2.采用自动设置(Autoset);
3.试着将收集方式切换到包络方式或峰值检测方式,因为包络方式是在多个收集记录中寻找极值,而峰值检测方式则是在单个收集记录中寻找大小值,这两种方法都能检测到较快的信号变化。
4.如果示波器有Insta Vu采集方式,可以选用,因为这种方式采集波形速度快,用这种方法显示的波形类似于用模拟示波器显示的波形。
采样速率与t/div的关系:每台数字示波器的大采样速率是一个定值。但是,在任意一个扫描时间t/div,采样速率fs由下式给出:
fs=N/(t/div) N为每格采样点
当采样点数N为一定值时,fs与t/div成反比,扫速越大,采样速率越低。下面是TDS520B的一组扫速与采样速率的数据:
综上所述,使用数字示波器时,为了避免混迭,扫速档好置于扫速较快的位置。如果想要捕捉到瞬息即逝的毛刺,扫速档则好置于主扫速较慢的位置。
存储深度
存储深度是同样是比较重要的技术指标,数字示波器所能存储的采样点多少的量度。如果需要不间断的捕捉一个脉冲串,则要求示波器有足够的内存以便捕捉整个事件。将所要捕捉的时间长度除以重现信号所须的取样速度,可以计算出所要求的存储深度,也称记录长度。并不是有些国内二流厂商对外宣称的“存储深度是指波形录制时所能录制的波形长记录“,这样的偷换概念,完全向相反方向引导人们的理解,难怪乎其技术指标高达”1042K“的记录长度。这就是为什么他们不说存储深度是在高速采样下,一次实时采集波形所能存储的波形点数。把经过A/D数字化后的八位二进制波形信息存储到示波器的高速CMOS内存中,就是示波器的存储,这个过程是“写过程”。内存的容量(存储深度)是很重要的。对于DSO(数字示波器),其大存储深度是一定的,但是在实际测试中所使用的存储长度却是可变的。 在存储深度一定的情况下,存储速度越快,存储时间就越短,他们之间是一个反比关系。同时采样率跟时基(timebase)是一个联动的关系,也就是调节时基档位越小采样率越高。存储速度等效于采样率,存储时间等效于采样时间,采样时间由示波器的显示窗口所代表的时间决定,所以;存储深度=采样率 × 采样时间(距离 = 速度×时间)由于DSO的水平刻度分为12格,每格的所代表的时间长度即为时基 (timebase),单位是s/div,所以采样时间= timebase × 12. 由存储关系式知道:提高示波器的存储深度可以间接提高示波器的采样率,当要测量较长时间的波形时,由于存储深度是固定的,所以只能降低采样率来达到,但这样势必造成波形质量的下降;如果增大存储深度,则可以以更高的采样率来测量,以获取不失真的波形。比如,当时基选择10us/div文件位时,整个示波器窗口的采样时间是10us/div * 12格=120us,在1Mpts的存储深度下,当前的实际采样率为:1M÷120us︽8.3GS/s,如果存储深度只有250K,那当前的实际采样率就只要2.0GS/s了!存储深度决定了实际采样率的大小,一句话,存储深度决定了DSO同时分析高频和低频现象的能力,包括低速信号的高频噪声和高速信号的低频调制。
上升时间
在模拟示波器中,上升时间是示波器的一项极其重要的指标。而在数字示波器中,上升时间甚至都不作为指标明确给出。由于数字示波器测量方法的原因,以致于自动测量出的上升时间不仅与采样点的位置相关。另外,上升时间还与扫速有关。
检定系统
随着电子技术的发展,数字示波器凭借数字技术和软件大大扩展了工作能力,早期产品的取样率低、存在较大死区时间、屏幕刷新率低等不足得到较大改善,以前难以观察的调制信号、通讯眼图、视频信号等复合信号越来越容易观察。数字示波器可以对数据进行运算和分析,特别适合于捕获复杂动态信号中产生的全部细节和异常现象,因而在科学研究、工业生产中得到了广泛的应用。为了让示波器工作在合格的状态,对示波器定期、快速、全面的检定,其量值溯源,是摆在测试工程师面前的一项紧迫任务。
手工检定效率低,容易出错,对每一种示波器的检定需要测试工程师翻阅大量的资料;自动测试系统具有准确快速地测量参数、直观地显示测试结果、自动存储测试数据等特性,是传统的手工测试无法达到的。用自动测试系统实现对示波器的程控检定将会是仪器检定的趋势。
GPIB、VXI、PXI是自动测试系统标准总线,GPIB以性能稳定、操作方便、价格低廉赢得用户的认可。这里选用了GPIB作为测试系统的总线。数字示波器因具有波形触发、存储、显示、测量、波形数据分析处理等特优点,其使用日益普及。由于数字示波器与模拟示波器之间存在较大的性能差异,如果使用不当,会产生较大的测量误差,从而影响测试任务 [2] 。
区分模拟带宽和数字实时带宽
带宽是示波器重要的指标之一。模拟示波器的带宽是一个固定的值,而数字示波器的带宽有模拟带宽和数字实时带宽两种。数字示波器对重复信号采用顺序采样或随机采样技术所能达到的高带宽为示波器的数字实时带宽,数字实时带宽与高数字化频率和波形重建技术因子K相关(数字实时带宽=高数字化速率/K),一般并不作为一项指标直接给出。从两种带宽的定义可以看出,模拟带宽只适合重复周期信号的测量,而数字实时带宽则同时适合重复信号和单次信号的测量。厂家声称示波器的带宽能达到多少兆,实际上指的是模拟带宽,数字实时带宽是要低于这个值的。例如说TEK公司的TES520B的带宽为500MHz,实际上是指其模拟带宽为500MHz,而高数字实时带宽只能达到400MHz远低于模拟带宽。所以在测量单次信号时,一定要参考数字示波器的数字实时带宽,否则会给测量带来意想不到的误差 [2] 。
有关采样速率
采样速率也称为数字化速率,是指单位时间内,对模拟输入信号的采样次数,常以MS/s表示。采样速率是数字示波器的一项重要指标 [2] 。

世通仪器检测服务有限公司,全国有多个实验室(广东,江苏,陕西,河南,重庆,四川,福建等等)均可上门检测,证书带CANS资质,欢迎来电咨询-陈经理化学需氧量表示在强酸性条件下重铬酸钾氧化一升污水中有机物所需的氧量,可大致表示污水中的有机物量。化学需氧量表示在强酸性条件下重铬酸钾氧化一升污水中有机物所需的氧量,可大致表示污水中的有机物量。COD是指标水体有机污染的一项重要指标,能够反应出水体的污染程度。
所谓化学需氧量(COD),是在一定的条件下,采用一定的强氧化剂处理水样时,所消耗的氧化剂量。它是表示水中还原性物质多少的一个指标。水中的还原性物质有各种有机物、亚硝酸盐、硫化物、亚铁盐等。但主要的是有机物。因此,化学需氧量(COD)又往往作为衡量水中有机物质含量多少的指标。化学需氧量越大,说明水体受有机物的污染越严重。
化学需氧量测定仪,是一种快速测定COD的仪器,兰州连华环保科技有限公司(原兰州炼化环保仪器研究所),是我国早开发水质监测仪器的厂家之一,公司在1982年发明了国内台COD催化快速测定仪,使传统方法中的2小时回流缩短为10分钟,大大提高了COD测定过程中人员效率和经济效益,1984年此方法作为世界化学领域新贡献收录在美国《CHEMICAL ABSTRACTS》中,公司经过20多年的不懈努力,此方法用户已经遍及全国各地,COD快速测定仪已经作为环境保护监测站水室标准仪器之一。公司始终致力于水质监测仪器的开发和生产,先后开发出了实验室、便携式、现场全自动在线仪表,5B型速测仪系列产品已经成为监测COD、氨氮、总磷等的重要工具之一.



下一条:陕西西咸新区试验机计量-专业仪器校验外校
广东省世通仪器检测服务有限公司为你提供的“合肥肥西计量器具第三方量具外校计量检测机构”详细介绍
广东省世通仪器检测服务有限公司
主营:仪器计量,仪器校准,仪器检测,服务
联系卖家 进入商铺

肥西计量器具信息

最新信息推荐

进店 拨打电话 微信