氮气(Nitrogen),是氮元素形成的一种单质,化学式N₂。常温常压下是一种无色无味的气体,只有在高温高压及催化剂条件下才能和氢气反应生成氨气,在放电的情况下能和氧气化合生成一氧化氮;即使Ca、Mg、Sr和Ba等活泼金属也只有在加热的情形下才能与其反应。
氮气的这种高度化学稳定性与其分子结构有关,2个N原子以叁键结合成为氮气分子,包含1个σ键和2个π键,因为在化学反应中受到攻击的是π键,而在N₂分子中π键的能级比σ键低,打开π键困难,因而使N₂难以参与化学反应。
氮是地球上第30丰富的元素。考虑到氮气占大气量的4/5,即占大气的78%以上,几乎可以使用无的氮气。工业常使用分馏液态空气的方法来获得大量氮气
瑞典化学家卡尔·谢勒(Carl Scheele)和苏格兰植物学家丹尼尔·卢瑟福(Daniel Rutherford)在1772年分别发现了氮。牧师卡文迪许和拉瓦锡也在差不多的同一时间立地获得了氮。Rutherford在他的老师Joseph Black的启发下,研究含碳物质在有的空气中燃烧后所留下的残余“空气”的性质时,他用KOH除去CO2,从而获得了氮。他认为这是从已燃烧的物质中吸收了燃素的普通空气。有些人不顾A. L. Lavoisier的研究成果,直到1840年还在争论关于氮气的基本性质。
氮气是一种有惰性的气体,一般不与其他物质发生反应,但在一定条件下,氮可与碱金属或碱土金属反应,相当于在氮分子的反键分子轨道上填充一个电子,金属的给电子能力越强,反应越易进行。如,在常温下锂可与氮直接反应,而钙需要加热到一定条件才能于氮气反应:
ⅢA和ⅣA族的一些元素在加热条件下能与氮气反应:
在高温、高压和催化剂存在的条件下,氮能与氢反应生成氨:
深冷分离法
深冷分离法工艺已经历了100多年的发展,先后经历了高压、高低压、中压和全低压流程等多种不同的工艺流程。随着现代空分工艺技术和设备的发展,高压、高低压、中压空分流程已基本被淘汰,能耗更低、生产更安全的全低压流程已成为大中型低温空分装置的。
膜分离法
膜分离技术是基于薄膜对气体组分具有选择性渗透和扩散的特性,以达到气体分离和纯化的目的。气体中各种组分透过膜的速度不同,每种组分透过膜的速度与该气体的性质、膜的特性和膜两面的分压差有关。透过膜的气体组分不可能达到的纯度。气体分离膜通常可分为多孔材质和非多孔材质,它们无机物(多孔玻璃、陶瓷、金属、电子导电性固体和钯合金等)或有机高分子(微孔聚乙烯、多孔醋酸纤维、均质醋酸纤维、聚硅氧烷橡胶和聚碳酸脂)组成。
氨分解法
在高温且有镍的催化下,氨逐渐分解为氮气与氢气:
然后把混合气在燃烧室内燃烧并控制空气比例,让氢气不完全燃烧,其燃烧生成物通过除氧,干燥则可得到不同氮氢混合比的保护性气体(其氢含量可控制在1%~25%)被使用于铜材的光亮退火(此方法仅适用于氮气氢气来源困难而氨价格又较低廉的情况时)。
储存方法
储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。储区应备有泄漏应急处理设备 [10]。
运输方法
采用刚瓶运输时戴好钢瓶上的安全帽。钢瓶一般平放,并应将瓶口朝同一方向,不可交叉;高度不得超过车辆的防护栏板,并用三角木垫卡牢,防止滚动。严禁与易燃物或可燃物等混装混运。夏季应早晚运输,防止日光曝晒。铁路运输时要禁止溜放。 [10]