济南历城区生产车牌识别系统规格型号-车牌系统识别
-
面议
系统进行视频车辆检测,需要具备很高的处理速度并采用的算法,在基本不丢帧的情况下实现图像采集、处理。若处理速度慢,则导致丢帧,使系统无法正确检测到行驶速度较快的车辆,同时也难以在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。
自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,后选定一个佳的区域作为牌照区域,并将其从图象中分割出来。
字符识别方法目前主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法将分割后的字符二值化,并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,后选佳匹配作为结果。基于人工神经元网络的算法有两种:一种是先对待识别字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把待处理图像输入网络,由网络自动实现特征提取直至识别出结果。
采用计算机视觉技术识别车牌的流程通常都包括车辆图像采集,车牌定位,字符分割,光学字符识别,输出识别结果5个步骤。车辆图像的采集方式决定了车牌识别的技术路线。目前国际ITS通行的两条主流技术路线是自然光和红外光图像采集识别。自然光和红外光不会对人体产生不良的心理影响,也不会对环境产生新的电子污染,属于绿色环保技术。
自然光路线是指白天利用自然光线,夜间采用辅助照明光源,用彩色摄像机采集车辆真彩色图像,用彩色图像分析处理方法识别车牌。自然光真彩色识别技术路线,与人眼感光习惯一致,并且,真彩色图像能够反映车辆及其周围环境真实的图像信息,不仅可以用来识别车牌照,而且可以用来识别车牌照颜色、车流量、车型、车颜色等车辆特征。用一个摄像机采集的图像,同时实现所有前端基本视频信息采集、识别和人工辅助图像取证判别,可以前瞻性的为未来的智能交通系统工程预留接口。
识别速度决定了一个车牌识别系统是否能够满足实时实际应用的要求。一个识别率很高的系统,如果需要几秒钟,甚至几分钟才能识别出结果,那么这个系统就会因为满足不了实际应用中的实时要求而毫无实用意义。例如,在高速公路收费中车牌识别应用的作用之一是减少通行时间,速度是这一类应用里减少通行时间、避免车道堵车的有力保障。
一个车牌识别系统的后台管理体系,决定了这个车牌识别系统是否好用。清楚地认识到重要的一点是识别率达到是不可能的,因为车牌照污损、模糊、遮挡,或者天气也许很糟(下雪﹑冰雹﹑大雾等等)。后台管理体系的功能应该包括:
1、识别结果和车辆图像数据的可靠存储,当多功能的系统操作使得网络出差错时能保护图像数据不会丢失,同时便于事后人工排查;
2、有效的自动比对和查询技术,被识别的车牌照号码要同数据库中成千上万的车牌号码自动比对和提示报警,如果车牌照号码没有被正确读取时就要采用模糊查询技术才能得出相对“佳”的比对结果;
3、一个好的车牌识别系统对于联网运行,还需要提供实时通信、网络安全、远程维护、动态数据交互、数据库自动更新、硬件参数设置、系统故障诊断。
将车牌识别设备安装于出入口,记录车辆的牌照号码、出入时间,并与自动门、栏杆机的控制设备结合,实现车辆的自动管理。应用于停车场可以实现自动计时收费,也可以自动计算可用车位数量并给出提示,实现停车收费自动管理节省人力、提率。应用于智能小区可以自动判别驶入车辆是否属于本小区,对非内部车辆实现自动计时收费。在一些单位这种应用还可以同车辆调度系统相结合,自动地、客观地记录本单位车辆的出车情况。
车牌识别系统在停车场中能够起到很大的作用,有助于推动停车场收入,特别是对丁一些机动型用户来说,能够随时释放山停车位,加大停车的梳动量。基丁停车场的车牌识别系统是一个基于视频监控和门禁系统合二为一的平台。该平台不仅允许终端用户查看视频信息,也可以让他们拉制摄像头,让系统抓拍到车牌信息后方可进入停车,停车费用明细可Web访问获取信息。