无锡滨湖区温度变送器校准-第三方检测校准机构
-
¥188.00
一般来说,由于仪表引起的电力设备障碍是很少的,但我们在工作中恰巧就碰到了一回。
当时我们电测班在变电所进行指示仪表周期轮换,结束后经检查,二次回路接线全部正确,仪表指示正常。但是在回来的路上我们接到变电所值班员的紧急通知,反映由于我们的工作引起母线空气开关跳闸。立即赶回变电所,现场经万用表核对接线,二次回路正确无误,但电压熔丝一旋上,母线空气开关就跳闸,怀疑是仪表内部电压短路,便试着逐个更换仪表,当更换了该线路的无功表,电压熔丝旋上后,一切正常,从而初步确定障碍由无功表内部原因引起,将“肇事者”带回。再对该表进一步检查、重新检定,该表各项指标均符合JJG124-1993《电流表、电压表、功率表及电阻表》检定规程的规定,又用万用表测量电压、电流回路之间电阻,发现并不短路。逐一核对规程上的检定项目,当看到修理后的仪表还要做绝缘电阻测试检查,忽然想到,虽然此表为新表,但仍怀疑是不是绝缘电阻有问题。在用摇表对其进行绝缘电阻检查时,果然测出该表的A相电流回路与B相电压回路存在短路现象。经过仔细观察和测试,发现该表的定圈(接A相电流回路)与铁芯(硅钢片)的绝缘电阻很小,即电流回路与铁芯导通;而B相电压的线头恰好与铁芯有一点接触,从而引起A相电流与B相电压导通,即电流回路与电压回路之间短路。当变电所电压熔丝合上后,就引起二次电压短路接地,发生母线空气开关跳闸的现象。因以前从未发生过这种情况,我们又将此表与其他功率表对比,发现此表为16D20-Var型,1997年出厂,为新购的一批表,比较这批表与其他批次的表,其他表为16D3-Var型,做工较精细,如图1。5为黑色硬塑料,位置在铁芯上方,离铁芯还有一段距离,且铁芯外面还有一圈铁套,则电压线头不可能与铁芯接触,即使定圈(电流回路)与铁芯绝缘不好,也不会发生电压、电流回路之间短路的现象。但这批16D20-Var型的表做工粗糙;5为一白色薄塑料片,位置在铁芯下方一点,紧靠着铁芯,铁芯外也没有铁套,铁芯裸露着,只要电压端线头稍微长一点,就很容易与铁芯相碰。造成这种情况,是生产厂家为节省材料所致,我们打电话到电表厂,反映了这个事实,厂家也承认了这个情况,并表示以后完全按规定组织生产。
至此得出结论:引起母线空气开关跳闸的原因系无功表的内部质量造成。为避免再次发生类似情况,我们采取了相应的预防措施:仪表检定时增加绝缘电阻检查这一环节,即使表的绝缘性能不过关,我们也能在检定时发现,不将其安装到变电所,一切问题迎刃而解。
(1)一块修理合格的电能表,经校验后却不合格,经检查,是磁铁上有铁屑。修理前没有铁屑,铁屑从何而来?笔者经过观察,终于找到了来源。在调表过程中,由于用力较大,而且不均匀,螺丝刀与螺丝互相磨擦,由于用力不均匀产生铁屑。
(2)修理合格的电能表,扣盖前校验合格,但扣盖后误差不合格,有时会发现误差波动。笔者经过分析,找到原因。由于扣盖后紧固螺丝上的特别紧,使表的底壳形变弯曲,使电压、电流线圈相对位置发生变化,导致上述现象出现。
(3)一块修校合格的电能表,走字试验后却发现超差。经重新校验后,误差仍合格,走字又出现同样情况。经过分析,是计度器倾斜或啮合过紧所致。所以,装配计度器时,应做到计度器齿轮与锅杆间距离为全齿高的1/2~2/3,计度器表面平正,计度器咬合不得过紧或过松(以竖直不刹平纹、不脱牙为准)。
(4)笔者某次校表,接好线后,在校验过程中,发现导线发热,立即停止校验。检查发现,有一根线没有拧紧,导致接触电阻过大发热。在电能表检定时一般重视接线的正确性,而忽视了接线的牢固性,导致了此种安全事故的发生。
在此,希望能够引起电能表检定同行的重视。
液相色谱作为一种、快速的分离分析技术,具有灵敏度高、选择性好的特点,能解决医药分析领域中的诸多复杂问题。如何正确使用及排除故障,将直接影响整个液相色谱仪的质量和分析结果的可靠性。
本公司使用的LC-10AD岛津液相色谱仪,其主要由LC-10AD泵、SPD-10A紫外检测器、N2000色谱工作站组成。而故障常发生于泵和紫外检测器。
一、LC-10AD泵的故障及排除方法
1.泵压力变化较大或没有流动相流出,又无压力指示
(1)原因是泵内有大量气体。可打开排放阀,使泵在较大流量下运转,将气泡排尽;也可以用一个50ml针筒在泵出口处帮助抽出气体。
(2)原因是高压密封环变形,产生漏液。更换密封环;平时注意不要超出规定的高压力。
2.泵流量或压力不稳
(1)原因是砂滤棒内有气泡或被盐的微晶粒或溢生的微生物部分堵塞。可卸下砂滤棒浸入10%硝酸内超声除去微生物或盐溶解,或浸入流动相内超声除气泡。再用蒸馏水立即清洗。
(2)原因是系统内有气泡。可加大流量排出气泡。
(3)原因是单向阀有异物。可卸下单向阀,放入烧杯中,加10%稀硝酸,用超声波清洗20分钟后,再用干净蒸馏水清洗。
3.泵压力过高的原因是管路被堵塞,需要卸下管道清除和清洗:压力过低的原因是管路滴漏,可扳紧各接口和更换损坏的管道。
4.键开关按下,泵不运行,只有嗡嗡电流声
此故障原因是电机缺相,电机线圈被烧坏一组或活塞被生锈卡住,应视情况给予排除。
二、SPD-10A紫外检测器的故障及排除方法
1.系统内有气泡
(1)如果气泡连续不断地通过流动池,将使噪声增大。对流动相进行充分除气。
检查系统各条导管是否漏气。如果导管损坏,更换并固紧各接口,加大系统流量驱除气泡。有条件的药厂,可配备一部脱气机。
(2)如果气泡流在检测器的流动池内,也可使噪音增大。
用手指压紧流动池出口,使池内增压,再快速放出流动相。反复操作数次,但注意不要使压力增加太大,以免流动池破裂或色谱柱冲坏。
2.流动相被污染
当流动池被污染时,可能产生噪音或基线漂移。可用水或甲醇等溶剂冲洗检测池(要注意溶剂的互溶性)。如果污染严重,就需要依次使用lmol/L硝酸、水和新鲜溶剂冲洗,或取出池体清洗,更换窗口。
3.光源灯出现故障
当氘灯使用到极限或者不能正常工作时,可能产生严重噪音,基线漂移,出现平头峰或齿形等异常峰,甚至基线不能回零。这时更换氘灯(一般氘灯寿命1000~2000小时)。
4.倒峰
(1)倒峰的出现,可能是检测器的极性接反。更正后即可将其转复为正峰。
(2)如果流动相中含有紫外吸收的杂质时,无吸收的组分就会产生倒峰。对此,改为高纯度的溶剂为流动相。
(3)在死时间附近的尖锐峰,往往是由进样时的压力变化或者由于样品溶剂与流动相不同所引起的。
由于巨化地处江南沿海地区,气候较为潮湿,且生产环境较为恶劣,许多称重传感器常因腐蚀性气体和潮湿等外界因素的影响而受损。我们经过多年的工作实践摸索出一些判断传感器是否损坏和在工作实践中如何防腐防潮的实用方法,现简要介绍如下:
一、受损原因初探
本公司各类大中型电子衡器一般都使用悬臂剪切梁电阻应变式称重传感器,该类型传感器内部由应变片组成的惠斯登电桥及补偿电阻构成。某些厂矿为节约生产成本,选用了价格低廉但密封性能较差的胶质密封式或橡胶密封式的称重传感器。由于其密封材质为胶质和橡胶,本身存在自然老化现象,再加上化工生产中许多称重传感器需在环境条件较为恶劣的腐蚀性场合下使用,加快了密封介质的龟裂老化,使得外界的腐蚀性介质和潮湿水气等得以通过损坏的隔离层侵入传感器内部,使得电阻元件自身阻值发生变化,导致测量结果失真。
二、判断方法
称重传感器因受腐蚀和受潮导致内部电阻元件受损时,会严重影响称量准确性。传感器是否受损可采用下述方法进行初步判断:
1.外观检查:仔细查看被检传感器的外观,如发现外观出现破损龟裂等现象则表明该传感器可能受损。
2.线路粗查:传感器的供电电源线、信号线和屏蔽线为同轴电缆,可用万用表对其进行对测(即电源线—信号线、电源线—屏蔽线、信号线—屏蔽线),若出现短路、断线或绝缘性能下降等现象则表明该传感器可能受损。
3.测量内部电阻:在没有检测设备时,可用位数字万用表的欧姆档对传感器的输入阻抗ZI和输出阻抗ZO进行测量,并将测得值与厂商提供的产品合格证书上的标称值进行比对,当测得值超过允许范围时,则表明该传感器可能受损(注:所用万用表自身数值应准确,好经过计量检定/校准后再用)。
4.空载检测:
(1)拆下所有传感器,逐个接入测量电路,在无外加载荷(空载)状态下,性能良好的传感器会快速回零且显示值较为稳定,而受损后的传感器则可能出现显示数值跳变,无法回零等现象。经手动清零后上述现象仍会重复出现。
(2)接好所有的传感器,仍旧进行空载测量,测量时先拆下一只传感器并观察显示数值是否能稳定,然后将该传感器仍旧接回后再拆下另一只传感器并进行测量,按顺序对所有传感器进行测量,若发现某只传感器被拆除后显示数值恢复正常则表明该传感器可能受损。
5.载荷校验:在使用了上述方法都无法判断出受损传感器时,可用标准计量标定法对所有传感器进行载荷校验。方法是用自重为1t的标准砝码对传感器逐一进行加载试验,未受损的传感器显示的测量值应为逐渐加载后标准砝码的叠加值,而受损后的传感器所显示的测得值则会与逐渐加载后的标准砝码叠加值产生较大的偏差(一般加载量应大于该传感器额定载荷的20%)。
三、预防和处理
针对称重传感器常在强腐蚀性潮湿环境下使用的特点,我们在安装和使用时采取了如下措施并取得了良好的效果:
1.在一般的生产环境下使用时可选用密封性能良好且不易老化的硅胶密封式称重传感器,在强腐蚀性或特别潮湿环境下使用时则选用密封性能的焊接密封式称重传感器。
2.在安装时尽量做到不使用地下管道,安装条件许可时可适当抬高承重平台的基座。若铺设地下穿线管道(如汽车衡、轨道衡等),则应选用耐压、防腐、阻燃、耐老化的PVDC塑胶管材,并设法将进、出口向上弯曲以阻止雨水等灌入管材内。
3.在安装传感器前用黄油涂抹整只传感器,当所有的传感器安装完毕后,还需对传感器与安装基座接合处、线路接口、接线盒(加法器)缝、PVDC穿线管道接口、进出口等易受腐蚀性气体和雨水潮气侵蚀及老鼠昆虫等侵入之处用黄油再次密封。
4.平时注意保持在用传感器的干燥清洁,发现积水及时排除,不用水冲洗承重平台以免祸及称重传感器。
本文根据实际工作经验,总结出氢火焰离子检测器的一些常见故障及其解决办法,以帮助使用者掌握一些仪器故障原因的分析及维修方法。
氢火焰离子化检测器(FID)是目前使用广泛的检测器,它能检测大多数有机物,灵敏度高,响应速度快,线性范围宽,恒温要求不高,结构简单,操作方便。在其使用过程中,由于使用不当或者一些意外因素,也经常会出现故障。常见故障有:1.氢焰点不着火,或者反复熄灭;2.放大器不能调零;3.基线漂移、噪声大;4.进样后不出峰;5.灵敏度显著降低等。现对故障的查找及解决方法分述如下:
1.由于点火装置使用频繁,无论是高压打火还是低压加热,都容易造成损耗,所以点不着火或者反复熄灭是一个常见故障。对此应检查连接导线并打开离子室顶盖,对低压点火可直接观察热丝是否发红,热丝接地是否接触不良。对高压点火可从检测器中取出在外面打火,调节打火距离并检查充电电容是否漏电而使放电电压不够。如果点火装置正常但仍不能点火或点火后反复熄灭,就必然是气路有问题,例如氢气漏气、氢气流量不足、氢气载气流量比太低、喷嘴堵塞或部分堵塞等。
2.整个氢焰检测电路不能调零。检查记录仪是否完好,当衰减拨到∞档或把信号输出线路断开时,记录笔应当回到零点。接着把检测器与放大器连接的同轴端卸下,检查放大器本身能否调零。如果不能调零,证明放大器有毛病,就应检查调频电位器是否失灵,负反馈线是否接通,尤其要检查级的工作是否正常,整个管子是否受潮或污染。对于长期使用的旧设备应考虑更换管子。如果放大器可以调零则可肯定它是好的。点火后记录笔又偏移很远,就应该检查气路系统和检测器,气体流量是否合适,固定液是否严重流失,系统是否污染或漏气等。
3.基线漂移或噪声较大是不能进样分析的。这时应判断漂移和噪声是来自放大器还是检测器。当衰减拨到∞档或者信号输出线段,开始记录笔并不抖动,证明记录仪是好的。然后依次改变衰减档,若噪声依次变化,证明衰减器是好的;若噪声并不随之改变,则连接电缆和衰减器可能有接触不良或污染。接着让放大器空白运转,如果噪声继续存在,说明放大器本身有问题。此时应仔细检查放大器电源是否有交流声,接触部位是否接触良好,级探头是否污染受潮或屏蔽不好。若晶体管或集成运算放大器的噪声太大,则应更换新器件。如果放大器的噪声很小但连接检测器后噪声增加、基流过大,说明气路系统有问题。可分别断开氢气源、空气源、载气源进行检查。氢气流量太高、空气流量太低、或者柱温太高、控温准确度低等都会使噪声增大。采取措施使噪声降低后,可用基流补偿旋钮进行补偿。
4.如果进样后不能出峰,情况很复杂,需要对很多部位分别进行细致的检查。主要从气路系统和离子室两方面着手。在气路系统方面有可能是管路、注射器,或者是气化室漏样造成的。也有可能是由于样品被色谱柱或者连接管路吸附或吸收。在离子室中有可能存在的问题是收集极被污染、收集极位置发生偏离、喷嘴堵塞或部分堵塞、由于喷嘴的损坏导致漏样、极化电压未加或偏低。
5.灵敏度的降低也是操作中经常出现的问题。有很多因素可以造成灵敏度的降低,如接触不良,氢气流量不是佳数值,空气流量太低、气路有漏洞等,这些都应当重新检查和调整。注射器、气化室、色谱柱接头、喷嘴等有可能漏气、漏样的部位发生泄漏,以及电极被污染都有可能发生灵敏度下降,需要逐一进行检查。
总之,对分析仪器来说,避免故障的主要的做法是正确的操作和调节,切忌盲目操作。对核心部位如离子室、微电流放大器等减少震动和碰撞,绝缘,根据不同的检测目的合理调节仪器的操作条件,并减少各种因素对仪器的污染和干扰。只有这样,才能减少故障发生的可能性。
614系列电子交流稳压源是在社会上拥有量比较大的电源设备,由于其运行可靠、价格适中而被广泛使用。但是,作为一切电子实验的电源设备,一旦有故障,尤其是对电子管不太熟悉的计量工作者而言,可能会束手无策。现介绍以下比较常用的614系列电子交流稳压源故障的检修方法。
1.稳压器发生故障时,根据起始电压判断故障范围
所谓起始电压是指稳压器刚通电,电子管还处于预热阶段时的电压指示值。正常稳压器的起始电压约为交流(170~180)V(输入电压为220V左右),一两分钟后电子管开始工作,电压上升,此时旋动“电压调节”装置,输出电压在交流(180~280)V之间可调。
若起始电压为交流电压280V以上,则多为C1击穿。因为L、C1回路并联于磁放大器T2的交流侧,扼流圈的电感量小于T2的电感量,相当于T2交流侧短路,此时输出电压是自耦变压器T1将输入电压进行升压的结果。
起始电压为230V左右,且预热后可以升高,但不能调低,则要检查输入电压是否已超出稳压范围,否则是L、C1回路断路。若断路,输出电压波形有明显的三次谐波。
若起始电压正常,输出电压仅在(240~280)V之间可调,说明有个别的6P3P碰极,使Id的小值不为零,而是一个较大的电流值。
起始电压正常,预热后输出电压280V以上,且不可调,故障在控制部分。
起始电压正常,预热后输出电压仍不可调高,则要分别检查调节和控制部分。
2.电压失调故障的原因与检修
电压失调是614系列稳压器的常见故障,可分为高失调和低失调两种。
(1)低失调
Id为零,说明功率放大级没有工作。由于是多只电子管并联工作,因此同时坏的可能性很小,一般多为整流桥(D14~D17及有关元件)损坏或直流线圈断线造成功率放大级无高压;另外还有可能是6N1阴极电阻R12断路,造成6P3P阴极电位常高,使6P3P截止。此时稳压器空载尚能工作,但是带上负载就会低失调,此为功放级还存在漏电流所致。第三种情况是R12良好而6P3P阴极电位常高,是因为6P3P栅极电位常高所致,系6J1断极,断丝不工作之故。第四种,R2断,使6J1控制栅极电位常低,6J1截止。
调节部分故障引起低失调的原因是T1初级断线或T2交流线圈断路。
(2)高失调
Id总为大值。因为功放级电子管同时碰极的可能性很小,多为前级控制电压未送到6P3P的阴极,造成其阴极电位常低。原因有:①前级各管无屏压,D1~D4损坏或R1断或C3击穿造成无直流输出;②6N1断极,断丝不工作;③6J1碰极造成6N1栅极电位常低;使6N1截止;④2D2P断丝或R4,W1断使2D2P屏极电位常高,从而使6J1常通,6N1栅极电位常低。
(3)基本检查方法
614系列稳压器的控制部分是一直流放大器,前后级电位相互影响,且各级电位随输入电压的不同而不同。检修时抓住各点电位是否可调来发现故障点。同时,针对直流放大器的前后级电位相互影响的特点,测量时,可拔去后级电子管,从而避免判断错误。具体测量时,注意零电位的选取,并参考以下几点电压值:
①测6N1阴极电位,应在(180~300)V间变化;
②测6J1屏压,应在(130~300)V间变化;
③测2D2P屏压,应在(0~170)V间变化。
若某点电位不可调,则说明本级存在故障或前级存在故障。以上电压仅供参考。
3.自激的产生与检查
当稳压器输出电压摆动或指示器一明一暗,电压表指针摆动,节律在(1~5)次/秒时,则说明控制部分出现了自激。原因为滤波、退耦或负反馈电路出现故障。如C3失效或容量减小;6J1放大倍数偏高,负反馈网络断开时也会自激,但R5、C2不易损坏,故不能随意更改其值,以免影响反应时间。如抖动幅度较小,换C3无效,可换6J1管再试。
当稳压器输出电压出现节律很慢的大幅度摆动,则R28断路,使直流线圈反峰电压失去放电回路造成。需注意的是,当614稳压器负载为电容性时(如恒压器、稳压器等),也会出现大幅度摆动,此属正常现象。
平时稳压器工作中输出电压无规律地随市电轻微波动的情况属正常现象,若波动严重,应检查是否反应时间迟滞。
4.其他故障
稳压器接通电源,指示灯不亮,整机不工作。可检查接线、开关是否松脱。
稳压器开机后控制部分无电压,经常是D1~D4击穿或保险F2烧断;D14~D17击穿或F1烧断,可逐一检查更换。
稳压器输出电压低于交流250V时,保护装置动作,或输出电压(250~260)V时,过压保护装置不动作,说明过压装置出现故障,应检查晶体管直流放大器电路,如检查D5~D8、D9~D12有无击穿和损坏,再查BG1~BG3有无损坏,继电器线圈是否开路。
当保护装置动作失常时,还应检查继电器的触点有无接触不良。