镁合金因其的性能被广泛应用在航天、通信等领域中。近年来,由于镁合金具有的生物安全性、可降解性以及生物力学相容性等特点,在生物医用合金应用上被广泛地关注与研究。但由于镁合金为密排六方结构导致其在室温下的塑性较差,限制了生物医用镁合金的加工成形与应用。
降低锻造镁合金屈服不对称性的策略是相关的,并且近几十年来受到了的关注。它们可以总结为(i)通过增加延伸孪生的临界分离剪切应力(CRSS)的比率来抑制延伸孪生的成核和生长,通过溶质原子的存在和沉淀物,并减小晶粒尺寸;(ii)通过添加稀土(RE)元素或采用多步热机械工艺来削弱质地。前者的典型案例是Stanford等人的研究,他们报告说AZ91 Mg合金的压缩屈服强度(CYS)与拉伸屈服强度(TYS)之比从固溶条件下的0.75增加到时效条件下的0.91。产量不对称性的降低归因于沉淀物与延伸孪生体的强烈相互作用 —— 这限制了缠绕量 —— 而它不影响棱柱滑移。
挤压态Mg-2Nd合金表现出高达30% 的拉伸延伸率与缓慢均匀的降解速率,但是材料的断裂强度只有193 MPa,比较高的塑性变形性能使Mg-2Nd合金在心血管支架、食道粘膜支架等方面具有良好的应用前景。Mg-Nd变形镁合金普遍表现出较高的塑性,这是因为Nd固溶于镁合金中,可以大幅降低镁合金的晶间层错能,使非基面滑移变得容易起来。
Zn元素是人体中的微量元素之一,在人体生长发育、生殖遗传、、内分泌等重要生理过程中起着极其重要的作用。同时,它还是镁合金中常用的合金元素之一,具有显著的固溶强化效果,并且还可以提高镁合金的腐蚀电位, 提高其耐蚀性。为此本文中通过在Mg-Nd合金中添加适量Zn元素来弥补Mg-Nd合金强度较低的不足,期望新的MgNd-Zn合金在保持良好的塑性变形能力的同时,还具备较高的强度,满足镁合金用于制作缝合线、吻合钉等植入物产品的性能要求。本文研究了Zn含量变化对铸态及挤压态Mg-2Nd-x Zn(x=0.2, 1.0, 2.0)合金和Mg-0.5Nd-x Zn(x=2.0, 4.0,6.0)合金的微观结构、力学性能以及腐蚀性能的影响。