通讯网关CI853
-
≥ 1个¥10.00
通讯网关 CI853
通讯网关 CI853
通讯网关 CI853
Applied Materials AMAT Purge Tree Assembly, 0010-04669
Applied Materials AMAT Valve Weldment, 0190-22506
Applied Materials AMAT Chemraz O-Ring, 3700-00456
Applied Materials AMAT Kalrez O-Ring, 3700-01800
5007 APPLIED MATERIALS ENDURA2 300MM PC ADAPTER KIT 0040-86515
AMAT APPLIED MATERIALS 0040-08494
Applied Materials (AMAT) 0040-36841
AMAT Applied Materials 0100-90071
AMAT Applied Materials 0100-90870 4
AMAT Applied Materials 0100-91025
在计算机视觉检测技术的实现过程中,由于检测速度和算法实现难易等方面的要求,往往需要将彩色图像转换为灰度图像来处理。本文在常用的灰度化算法的基础上,分析了彩色检测图像的特点,并研究了一种计算简单,在视觉上能够把背景和对象物的灰度明显区分开,而且能够把灰度图像中的物体和背景的灰度级分开便于后续计算机处理的灰度化算法。本实验中经灰度化处理后的图像见图2。 检测图像的平滑技术是指一类能够平滑加性、脉冲等噪声,以降低噪声对图像的影响。常用的平滑技术有线性平滑滤波、非线性滤波和数学形态学滤波等。本文采用的是非线性滤波中具代表性的中值滤波器。主要原因是因为它对于某些特定的随机噪声有很好的滤除效果,而且它比同样尺寸的线性平滑滤波器处理图像时要少得多的模糊作用。本文采用使用了 模板对检测图像进行了中值滤波处理,处理后的图像见图3。处理结果表明,中值滤波能基本上消除图象中的噪声,从而为后继处理提供了“干净“的图象。 3.3边缘跟踪: 边缘检测在图像处理、计算机视觉和模式识别中是一个关键问题。常用的边缘检测有Sobel、Prewitt、Laplacian和LoG算子。Sobel、Prewitt算子能提供好的边缘信息,但它们同时也会检测出许多伪边缘,边缘定位精度不高。在实际处理图像时,一般不直接使用Laplacian算子,因为它对噪声十分敏感,Laplacian处理图像会产生双边缘的幅度,因而造图像分割的困难;而且由于Laplacian算子为各向同性算子,因而不能够检测边缘的方向。