梧州电压互感器JDZX9-35
-
面议
要研究电流互感器的工作特性,确认其在保护外部故障通过大电流时是否会饱和而影响保护动作的正确性,可通过一些试验方法进行检测。
显然,直接的试验方法就是二次侧带实际负载,从一次侧通入电流,观察二次电流找出电流互感器的饱和点。但是,对于保护级的电流互感器,其饱和点可能超过15~20倍额定电流,当电流互感器变比较大时,在现场进行该项试验会有困难。
除此之外,还可通过伏安特性试验测出电流互感器的饱和点。如前所述,电流互感器饱和是由于铁心磁通密度过大造成计算出电流互感器的饱和电流。伏安特性的试验方法为:原方开路,从副方通入电流,测量副方绕组上的电压降。由于电流互感器的原方开路,没有原方电流的去磁作用,在不大的电流作用下,铁心很容易就会饱和。因此,伏安特性试验并不需要加很大的电流,在现场较容易实现。
为满足保护、测量的需要,各个铁芯具有的准确等级可以不同。保护用电流互感器应选用P级或TP级。
P级是一般保护用电流互感器,可分为5Px,10Px两种,如5P10,5P20,10P10,10P20等,其中P表示保护用铁芯,P之前的数字表示综合误差及准确等级,P之后的数字表示极限准确倍数。TP级是具有暂态特性铁芯的电流互感器。
出于经济上的考虑,目前在220kv及以下电力系统继电保护回路尚不推荐使用TP型电流互感器,通常采用10P型电流互感器铁芯,只有对精度有特殊要求而10P型铁芯不能满足时菜采用造价相对较高的5P型电流互感器铁芯。
互感器厂的电流互感器
利用变压器原、副边电流成比例的特点制成。其工作原理、等值电路也与一般变压器相同,只是其原边绕组串联在被测电路中,且匝数很少;副边绕组接电流表、继电器电流线圈等低阻抗负载,近似短路。原边电流(即被测电流)和副边电流取决于被测线路的负载,而与电流互感器的副边负载无关。由于副边接近于短路,所以原、副边电压U1和都很小,励磁电流I0也很小。 电流互感器运行时,副边不允许开路。因为一旦开路,原边电流均成为励磁电流,使磁通和副边电压大大超过正常值而危及人身和设备安全。因此,电流互感器副边回路中不许接熔断器,也不允许在运行时未经旁路就拆下电流表、继电器等设备。 电流互感器的接线方式按其所接负载的运行要求确定。常用的接线方式为单相,三相星形和不完全星形。
互感器早出现于19世纪末。随着电力工业的发展,互感器的电压等级和准确级别都有很大提高,还发展了很多特种互感器,如电压、电流复合式互感器、直流电流互感器,高准确度的电流比率器和电压比率器,大电流激光式电流互感器,电子线路补偿互感器,电压系统中的光电互感器,以及SF6全封闭组合电器(GIS)中的电压、电流互感器。互感器厂在电力工业中,要发展什么电压等级和规模的电力系统,发展相应电压等级和准确度的互感器,以供电力系统测量、保护和控制的需要。
随着很多新材料的不断应用,互感器也出现了很多新的种类,互感器厂的电磁式互感器得到了比较充分的发展,其中铁心式电流互感器以干式、油浸式和气体绝缘式多种结构适应了电力建设的发展需求。然而随着电力传输容量的不断增长,电网电压等级的不断提高及保护要求的不断完善,一般的铁 心式电流互感器结构已逐渐暴露出与之不相适应的弱点,其固有的体积大、磁饱和、铁磁谐振、动态范围小,使用频带窄等弱点,难以满难以满足新一代电力系统自动化、电力数字网等的发展需要。
随着光电子技术的迅速发展,许多科技发达国家已把目光转向利用光学传感技术和电子学方法来发展新型的电子式电流互感器,简称光电电流互感器。国际电工协会已发布电子式电流互感器的标准。互感器厂的电子式互感器的含义,除了包括光电式的互感器,还包括其它各种利用电子测试原理的电压、电流传感器。
、当高压侧发生断路时,电流互感器还能保护测量仪表的电流线圈不受大电流的损害。
看二次接线图的基本方法
先一次,后二次;先交流,后直流;先电源,后接线;先线圈,后触点;先上后下;先左后右。
互感器的作用和功能主要有以下几点:
(1)将一次系统的高电压变为易于测量的低电压,并且规定为标准数值,即额定电压为100V。这样,可使测量仪表、保护控制装置标准化、小型化。
(2)将电气二次设备与一次设备相隔离,即了设备和人身的安全,又使接线灵活、安装方便、维修时不必中断一次设备的运行。
(3)系统运行参数由互感器二次侧采集,易于实行微机监控和远方操作,便于集中控制。
第二节电压互感器及其接线
互感器性能的好坏,直接影响到电力系统测量、计量的准确性和继电器保护装置动作的可靠性。
电流互感器主要有下列四个作用:
一、主要提供保护、测量用的二次电流的作用。
二、电流互感器一次侧与一次高压设备相连,二次侧与二次设备相连,它不仅能使测量仪表和继电器保护等二次电气设备与高压电器装置有效的隔离,工作人员的安全,还能使测量仪表和继电器标准化和小型化。
三、电流互感器可采用小截面的电线、电缆进行远距离的测量。