重庆铝硅焊丝锰镍铝青铜焊丝
-
面议
铝合金焊接保护措施
1、焊前用化学+机械的方法清除工件坡口及周围部分和焊丝表面的氧化物,顺序是先化学清洗,后机械打磨;
2、焊接过程中要采用合格的保护气体进行保护;
3、在气焊时,采用熔剂,在焊接过程中不断用焊丝挑破熔池表面的氧化膜。
焊接难点
(1)极易氧化。在空气中,铝容易同氧化合,生成致密的三氧化二铝薄膜(厚度约0.1-0.2μm),熔点高(约2050℃),远远超过铝及铝合金的熔点(约600℃左右)。氧化铝的密度3.95-4.10g/cm3,约为铝的1.4倍,氧化铝薄膜的表面易吸附水分,焊接时,它阻碍基本金属的熔合,极易形成气孔、夹渣、未熔合等缺陷,引起焊缝性能下降。
(2)易产生气孔。铝和铝合金焊接时产生气孔的主要原因是氢,由于液态铝可溶解大量的氢,而固态铝几乎不溶解氢,因此当熔池温度快速冷却与凝固时,氢来不及逸出,容易在焊缝中聚集形成气孔。氢气孔难于完全避免,氢的来源很多,有电弧焊气氛中的氢,铝板、焊丝表面氧化膜吸附空气中的水分等。实践,即使氩气按GB/T4842标准要求,纯度达到99.99% 以上,但当水分含量达到20ppm时,也会出现大量的致密气孔,当空气相对湿度超过80%时,如果不采取加热等措施,焊缝就会明显出现气孔。同时,采用小电流慢速焊,加大焊缝冷却时间,并利用焊丝电弧进行熔池搅动,可以较好的帮助气体排出熔池。
(3)焊缝变形和形成裂纹倾向大。铝的线膨胀系数和结晶收缩率约比钢大两倍,易产生较大的焊接变形的内应力,对刚性较大的结构将促使热裂纹的产生。
(4)铝的导热系数大(纯铝0.538卡/Cm.s.℃)。约为钢的4倍,因此,焊接铝和铝合金时,比焊钢要消耗更多的热量。
(5)合金元素的蒸发的烧损。铝合金中含有低沸点的元素(如镁、锌、锰等),在高温电弧作用下,极易蒸发烧损,从而改变焊缝金属的化学成分,使焊缝性能下降。
(6)高温强度和塑性低。高温时铝的强度和塑性很低,破坏了焊缝金属的成形,有时还容易造成焊缝金属塌落和焊穿现象。
(7)无色彩变化。铝及铝合金从固态转为液态时,无明显的颜色变化,使操作者难以掌握加热温度
合 金
典 型 用 途
2014
应用于要求高强度与硬度(包括高温)的场合。飞机重型、锻件、厚板和挤压材料,车轮与结构元件,多级火箭级燃料槽与航天器零件,卡车构架与悬挂系统零件
2019
是个获得工业应用的2XXX系合金,目前的应用范围较窄,主要为铆钉、通用机械零件、结构与运输工具结构件,螺旋桨与配件
2024
飞机结构、铆钉、构件、卡车轮毂、螺旋桨元件及其他种种结构件
2048
航空航天器结构件与兵器结构零件
2124
航空航天器结构件
2218
飞机发动机和柴油发动机活塞,飞机发动机汽缸头,喷气发动机叶轮和压缩机环
2219
航天火箭焊接氧化剂槽,超音速飞机蒙皮与结构零件,工作温度为-270~300摄氏度。焊接性好,断裂韧性高,T8状态有很高的抗应力腐蚀开裂能力
2618
模锻件与自由锻件。活塞和航空发动机零件
2A02
工作温度200~300摄氏度的涡轮喷气发动机的轴向压气机叶片
2A06
工作温度150~250摄氏度的飞机结构及工作温度125~250摄氏度的结构铆钉
2A10
强度比2A01合金的高,用于制造工作温度小于等于100摄氏度的结构铆钉
2A11
飞机的中等强度的结构件、螺旋桨叶片、交通运输工具与建筑结构件。的中等强度的螺栓与铆钉
2A12
蒙皮、隔框、翼肋、翼梁、铆钉等,建筑与交通运输工具结构件
2A14
形状复杂的自由锻件与模锻件
2A16
工作温度250~300摄氏度的航天零件,在室温及高温下工作的焊接容器与气密座舱
2A17
工作温度225~250摄氏底的零件
2A50
形状复杂的中等强度零件
2A60
发动机压气机轮、导风轮、风扇、叶轮等
2A70
飞机蒙皮,发动机活塞、导风轮、等
2A80
航空发动机压气机叶片、叶轮、活塞、涨圈及其他工作温度高的零件
2A90
航空发动机活塞
3A21
飞机油箱、油路导管、铆钉线材等;建筑材料与食品等工业装备等
5052
此合金有良好的成形加工性能、抗蚀性、可烛性、疲劳强度与中等的静态强度,用于制造飞机油箱、油管,以及交通车辆、船舶的钣金件,仪表、街灯支架与铆钉、五金制品等
5056
镁合金与电缆护套铆钉、拉链、钉子等;包铝的线材广泛用于加工农业捕虫器罩,以及需要有高抗蚀性的其他场合
5083
用于需要有高的抗蚀性、良好的可焊性和中等强度的场合,诸如舰艇、汽车和飞机板焊接件;需严格防火的压力容器、致冷装置、电视塔、钻探设备、交通运输设备、元件、装甲等
5086
用于需要有高的抗蚀性、良好的可焊性和中等强度的场合,例如舰艇、汽车、飞机、低温设备、电视塔、钻井装置、运输设备、零部件与甲板等
5A02
飞机油箱与导管,焊丝,铆钉,船舶结构件
5A03
中等强度焊接结构,冷冲压零件,焊接容器,焊丝,可用来代替5A02合金
5A05
焊接结构件,飞机蒙皮骨架
5A06
焊接结构,冷模锻零件,焊拉容器受力零件,飞机蒙皮骨部件
6005
挤压型材与管材,用于要求强高大于6063合金的结构件,如梯子、电视天线等
6009
汽车车身板
6010
薄板:汽车车身
6061
要求有一定强度、可焊性与抗蚀性高的各种工业结构性,如制造卡车、塔式建筑、船舶、电车、家具、机械零件、精密加工等用的管、棒、形材、板材
6A02
飞机发动机零件,形状复杂的锻件与模锻件
7049
用于锻造静态强度与7079-T6合金的相同而又要求有高的抗应力腐蚀开裂勇力的零件,如飞机与零件——起落架液压缸和挤压件。零件的疲劳性能大致与7075-T6合金的相等,而韧性稍高
7050
飞机结构件用中厚板、挤压件、自由锻件与模锻件。制造这类零件对合金的要求是:抗剥落腐蚀、应力腐蚀开裂能力、断裂韧性与抗疲劳性能都高
7075
用于制造飞机结构及 他要求强度高、抗腐蚀性能强的高应力结构件、模具制造
7175
用于锻造用的高强度结构性。T736材料有良好的综合性能,即强度、抗剥落腐蚀与抗应力腐蚀开裂性能、断裂韧性、疲劳强度都高
7178
供制造航空航天器的要求抗压屈服强度高的零部件
7475
机身用的包铝的与未包铝的板材,机翼骨架、桁条等。其他既要有高的强度又要有高的断裂韧性的零部件
7A04
飞机蒙皮、螺钉、以及受力构件如大梁桁条、隔框、翼肋、起落架等
焊后处理
(1)焊后清理 焊后留在焊缝及四周的残存焊剂和焊渣等会破坏铝表面的钝化膜,有时还会腐蚀铝件,应清理干净。外形简单、要求一般的工件可以用热水冲洗或蒸气吹刷等简单方法清理。要求高而外形复杂的铝件,在热水中用硬毛刷洗擦后,再在60℃~80℃左右、浓度为2%~3%的铬酐水溶液或溶液中浸洗5 min~10 min,并用硬毛洗擦刷,然后在热水中冲洗擦涤,用烘箱烘干,或用热空气吹干,也可自然干燥。
(2)焊后热处理 铝容器一般焊后不要求热处理。假如所用铝材在容器接触的介质条件下确有明显的应力腐蚀敏感性,需要通过焊后热处理以消除较高的焊接应力,来使容器上的应力降低到产生应力腐蚀开裂的临界应力以下,这时应由容器设计文件提出特别要求,才进行焊后消除应力热处理。如需焊后退火热处理,对于纯铝、5052、5086、5154、5454、5A02、5A03、5A06等,推荐温度为345℃;对于2014、2024、3003、3004、5056、5083、5456、6061、6063、2A12、2A24、3A21等,推荐温度为415℃;对于2019、2A11、6A02等,推荐温度为360℃,根据工件大小与要求,退火温度可正向或负向各调20℃~30℃,保温时间可在0.5 h~2 h之间。
应用举例:铝母线的焊接
大中型发电机组的槽形和管形,小型机组的板状母线。
1、母线材质、焊接材料及设备
母线材质:L2工业纯铝;
焊材:丝301或丝311;
焊接设备:交流氩弧、熔化极气体保护焊机。
2、对接坡口及接头垫板
(1)对接坡口及其尺寸
δ≤6mm,不开坡口,间隙2-5mm;
δ=6-20mm,70ºV型坡口,间隙5-8mm,钝边1-2mm。
(2)坡口根部垫板
1)铝质或钢质;
2)垫板的大小视母线形状和尺寸而选择;
3)母线为板状或槽状时,选板形垫板;
4)母线为管形时,一般选纯铝垫圈;
5)母线封闭外壳的环缝对接选用带弧形槽的钢垫板。
3、清洗工艺
(1)焊丝清洗:分焊丝整理,碱洗,酸洗,烘干存放几个步骤。烘好的焊丝要随即使用,避免再次氧化。
(2)焊件坡口清理
1)化学清洗 :采用清洗剂进行清洗。
2)机械清洗:先用(、松香或汽油)擦拭表面除油污,然后用细钢丝刷或刮刀使母材焊接区刮至有金属光泽为止。
(3)焊接过程中的清理
清除焊接过程中出现的黑斑、粘合、夹渣(铲削)。
4、焊接工艺
(1)预热:一般可采取电阻炉加热。高一些为好,但不要超过250ºC。
(2)工艺要点:TIG焊
1)大规范参数:钨棒直径3-6mm,焊丝直径2.4-6mm,焊接电流250-400A,氩气流量15-20l/min(视喷嘴大小决定)。
2)点焊要求
直线焊缝先点焊两端,后点焊中部至少三处,每处约60~80mm;
外壳环焊缝每隔60º点焊一处,每处长约80mm左右;
管形主母线沿圆周均分2-4处点焊,每处长约40-50mm。
3)好用铝制引弧板引弧和收弧。
纯铝材料应用
1.1035:具有较高的可塑性、耐蚀性、导电性和导热性,强度低。用于电容器、电子管隔离罩、电线保护套、电缆电线线芯等。
2.1045:标牌、厚箔、铰接件(颌)热交换器、炊具、PS版基
3.1050:食品、化学和酿造工业用挤压盘管,各种软管,粉、翅片料、深冲、炊具
4. 1060/1070:要求抗蚀性与成形性均高的场合,但对强度要求不高,化工设备是其典型用途,深冲料
5. 1100:用于加工需要有良好的成形性和高的抗蚀性但不要求有高强度的零件部件,例如化工产品、食品工业装置与储存容器、薄板加工件、深拉或旋压凹形器皿、焊接零部件、热交换器、印刷板、铭牌、反光器具、铰接件热交换器、炊具
6.1145:包装及绝热铝箔,热交换器
7.1199电解电容器箔,光学反光膜
8.1200:电容器、炊具、食品及药物包装
9.1350:电线、导电绞线、汇流排、变压器带材等导电体
10.1A85/1A90/1A93/1A97/1A99:工业高纯铝,主要用于生产各种电解电容器箔材、抗酸容器等
一、铝及铝合金的分类
铝具有良好的导电性、导热性,其密度小,质量轻,塑性好。
在纯铝中加入各种合金元素而成的铝合金,强度显著提高。
1、工业纯铝
纯铝的牌号有1070A(L1)、1060A(L2)、1050A(L3)以及1A85(LG1)、1A90(LG2)、1A99(LG5),其中的杂质主要是铁和硅,随杂质含量的增加,强度增加,塑性、导电性和耐蚀性下降。
2、铝合金
在纯铝中加入少量合金元素能大大改善铝的各项性能。Cu、Mg、Mn能提高强度,Ti能细化晶粒,Mg能抗海水腐蚀,Ni能提高耐热性。
铝合金分变形铝合金和铸造铝合金两大类。
变形铝合金在加热时能形成单相固溶体组织,能进行各种压力加工。其又可分为非热处理强化和热处理强化两类。
热处理强化的铝合金又可分为硬铝合金、锻铝合金、超硬铝合金。
铸造铝合金适宜于铸造而不能进行压力加工。
容器规范采用的铝及铝合金 要求制造容器的材料具有良好的成形性和焊接性,JB/T4734-2002《铝制焊接容器》中采用的铝及铝合金有:
产业纯铝 1A85、1050A、1060和1200。
Al-Cu合金 2014。
Al-Mn合金 3003和3004。
Al-Mg合金 5A02、5A03、5A05、5052、5052、5058和5086。
Al-Mg-Si合金 6A02、6061和6063。
典型牌号铝及铝合金化学成分和力学性能,可查阅相关标准。
铝及铝合金的焊接工艺
铝及铝合金的焊接特点
(1) 铝在空气中及焊接时极易氧化,天生的氧化铝(Al2O3)熔点高、非常稳定,不易往除。阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易天生夹渣、未熔合、未焊透等缺欠。铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。焊接前应采用化学或机械方法进行严格表面清理,清除其表面氧化膜。在焊接过程加强保护,防止其氧化。钨极氩弧焊时,选用交流电源,通过“阴极清理”作用,往除氧化膜。气焊时,采用往除氧化膜的焊剂。在厚板焊接时,可加大焊接热量,例如,氦弧热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。
(2)铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。铝的热导率则是奥氏体不锈钢的十几倍。在焊接过程中,大量的热量能被迅速传导到基体金属内部,因而焊接铝及铝合金时,能量除消耗于熔化金属熔池外,还要有更多的热量无谓消耗于金属其他部位,这种无用能量的消耗要比钢的焊接更为明显,为了获得的焊接接头,应当尽量采用能量集中、功率大的能源,有时也可采用预热等工艺措施。
(3)铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需采取预防焊接变形的措施。铝焊接熔池凝固时轻易产生缩孔、缩松、热裂纹及较高的内应力。生产中可采用调整焊丝成分与焊接工艺的措施防止热裂纹的产生。在耐蚀性答应的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。在铝硅合金中含硅0.5%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,活动性明显进步,收缩率下降,热裂倾向也相应减小。根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi条(硅含量4.5%~6%)焊丝会有更好的抗裂性。
(4)铝对光、热的反射能力较强,固、液转态时,没有明显的光彩变化,焊接操纵时判定难。高温铝强度很低,支撑熔池困难,轻易焊穿。
(5)铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成氢气孔。弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。因此,对氢的来源要严格控制,以防止气孔的形成。
(6)合金元素易蒸发、烧损,使焊缝性能下降。
(7)母材基体金属如为变形强化或固溶时效强化时,焊接热会使热影响区的强度下降。
(8) 铝为面心立方晶格,没有同素异构体,加热与冷却过程中没有相变,焊缝晶粒易粗大,不能通过相变来细化晶粒。
拉丝机安全操作规程为了更好地使快速拉丝机合理运作和产品品质获得确保,特制订本安全操作规程适用该设备台的任何商品生产制造主题活动和维护保养工作中与实际操作该高速加工中心的作业员和保养工作人员,务必互相配合,合力工作中,及时处理难题妥善处理。
一、熔化极气体保护电弧焊的概念及分类
使用熔化电极,以外加气体作为电弧介质,并保护金属熔滴,焊接熔池和焊接区高温金属的电弧焊方法,称为熔化极气体保护电弧焊。
根据焊丝材料和保护气体的不同,可将其分为以下几种方法,如图所示。
按焊丝分类可分为实芯焊丝焊接和药芯焊丝焊接。
用实芯焊丝的惰性气体(Ar或He)保护电弧焊法称为熔化极惰性气体保护焊,简称MIG焊(Metal Inert Gas Arc Welding).
用实芯焊丝的富氩混合气体保护电弧焊,简称MAG焊(Metal Active Gas Arc Welding)。
用实芯焊丝的CO2气体保护焊,简称CO2焊。
用药芯焊丝时,可以用CO2或CO2+Ar混合气体作为保护气体的电弧焊称为药芯焊丝气体保护焊。
还可以不加保护气体,这种方法称为自保护电弧焊。
二、普通MIG/MAG焊和CO2焊的区别
CO2焊的的特点是:成本便宜、生产。但是存在飞溅量大、成型差的缺点,因而有些焊接工艺采用普通MIG/MAG焊。
普通MIG/MAG焊是以惰性气体保护或以富氩气体保护的弧焊方法,而CO2焊却具有强烈的氧化性,这就决定了二者的区别和特点。
与CO2焊相比MIG/MAG焊的主要优点如下:
1) 飞溅量减少50%以上。在氩或富氩气体保护下的焊接电弧稳定,不但射滴过渡与射流过渡时电弧稳定,而且在小电流MAG焊的短路过渡情况下,电弧对熔滴的排斥作用较小,从而了MIG/MAG焊短路过渡的飞溅量减少50%以上。
2) 焊缝成形均匀、美观。由于MIG/MAG焊熔滴过渡均匀、细微、稳定,所以焊缝成形均匀、美观。
3) 可以焊接许多活泼金属及其合金。电弧气氛的氧化性很弱,甚至无氧化性,MIG/MAG焊不但可以焊接碳钢、高合金钢,而且还可以焊接许多活泼金属及其合金,如:铝及铝合金、不锈钢及其合金、镁及镁合金等。
4) 大大地提高了焊接工艺性、焊接质量和生产效率。
三、脉冲MIG/MAG焊和普通MIG/MAG焊的区别
普通MIG/MAG焊的主要熔滴过渡形式是大电流时的射流过渡和小电流时的短路过渡,因而小电流仍存在飞溅量大、成型差的缺点,尤其是有些活泼金属在小电流下无法焊接如铝及合金、不锈钢等。
因而出现了脉冲MIG/MAG焊,其熔滴过渡特点是每个电流脉冲过渡一个熔滴,就其实质而言属于射滴过渡。与普通MIG/MAG焊相比其主要特点如下:
1)脉冲MIG/MAG焊的佳熔滴过渡形式是一个脉冲过渡一个熔滴。这样通过调节脉冲频率就能够改变单位时间内熔滴过渡的滴数,也就是焊丝熔化速度。
2)由于一脉一滴的射滴过渡,熔滴直径大致与焊丝直径相等,则熔滴电弧热较低,也就是熔滴温度低(与射流过渡和大滴过渡相比)。所以提高了焊丝的熔化系数,也就是提高了焊丝的熔化效率。
3)因熔滴温度低,所以焊接烟雾少。这样一方面降低了合金元素的烧损,另一方面改善了施工环境。
与普通MIG/MAG焊相比其主要优点如下:
1)焊接飞溅小,甚至无飞溅。
2)电弧指向性好,适于全位置焊接。
3)焊缝成形良好,熔宽较大,指状熔深特点减弱,余高小。
4)小电流焊接活泼金属(如铝及其合金等)。扩大了MIG/MAG焊射流过渡的使用电流范围。脉冲焊时焊接电流从射流过渡的临界电流附近一直到几十安的较大电流范围内均可实现稳定的射滴过渡。
由上述可知脉冲MIG/MAG的特点和优点,但是任何事物都不可能无缺的。和普通MIG/MAG相比其不足之处如下:
1) 焊接生产效率习惯性感觉略低。
2) 对焊工人员素质要求较高。
3) 目前来说焊接设备价格较高。
三、脉冲MIG/MAG焊的选用主要工艺决定
针对以上对比结果,脉冲MIG/MAG焊虽然有诸多优点是其它焊无法实现和比拟的,但是其同样存在设备价格高、生产效率略低、焊工不易掌握的问题。所以脉冲MIG/MAG焊的选用主要由焊接工艺要求决定的。就目前国内的焊接工艺标准,以下焊接基本上使用脉冲MIG/MAG焊。
1)碳钢类。对焊缝质量、外观要求较高的场合,主要是压力容器行业,如锅炉、化工换热器、中央空调换热器,还有水电行业水轮机的涡壳等。
2)不锈钢类。使用小电流(200A以下在此称小电流,下同)和对焊缝质量、外观要求较高的场合,如机车、化工行业的压力容器等。
3)铝及其合金类。使用小电流(200A以下在此称小电流,下同)和对焊缝质量、外观要求较高的场合,如动车、高压开关、空分等行业。尤其是动车,包括南车集团四方车辆车、唐山车辆厂和长客等及为他们外协加工的小厂家。据业内消息,到2015年国内所有省会和人口超过50万的城市均实现通动车,可见动车的需求量之大,焊接工作量和焊接设备的需求之大。
4)铜及其合金类。根据目前的了解情况,铜及其合金基本上都使用脉冲MIG/MAG焊(在熔化极气保焊范围内)。