商品详情大图

上海铝硅焊丝铝硅焊丝4043

及时发货 交易保障 卖家承担邮费

商品详情

铝合金类别
通常以四位数字标明:位数字: 合金成分
1000系列:材料含99%以上之纯铝
2000系列:铜(Copper)为主要之成分---易热处理以提高强度, 但提高了腐蚀性
3000系列:锰(Manganese)为主要之成分----增加硬度
4000系列:硅(Silicon)为主要之成分-----为焊条之理想材料
5000系列:镁(Magnesium)为主要之成分-----提高强度及抗腐蚀
6000系列:镁与硅为主要之成分-----以硅化镁存在,可热处理提高强度及易加工
7000系列:锌(Zinc)为主要之成分-----经热处理提高强度,为所有铝合金中强度高

五系
5000系列铝合金代表5052、5005、5083、5A05系列。5000系列铝棒属于较常用的合金铝板系列,主要元素为镁,含镁量在3-5%之间。又可以称为铝镁合金。主要特点为密度低,抗拉强度高,延伸率高。在相同面积下铝镁合金的重量低于其他系列.在常规工业中应用也较为广泛。在我国5000系列铝板属于较为成熟的铝板系列之一。
铝的特性
a)优点
铝及铝合金是目前应用广泛之飞机制造材料。
重量轻,差不多是同体积铜或钢的1/3重量。
防腐蚀能力强。
可反射能—可见光、热、电磁波。
导电及导热能力强,且又是非铁磁性。
容易接合(焊接、铆接或胶合)
外观及表面易处理
机械性质良好,经加工处理后强度高、延展性高
存量多

b)缺点

当温度升高超过200℃,强度大幅减弱
当温度下降时倾向脆性材料

铝合金焊接保护措施
1、焊前用化学+机械的方法清除工件坡口及周围部分和焊丝表面的氧化物,顺序是先化学清洗,后机械打磨;
2、焊接过程中要采用合格的保护气体进行保护;
3、在气焊时,采用熔剂,在焊接过程中不断用焊丝挑破熔池表面的氧化膜。
焊接难点
(1)极易氧化。在空气中,铝容易同氧化合,生成致密的三氧化二铝薄膜(厚度约0.1-0.2μm),熔点高(约2050℃),远远超过铝及铝合金的熔点(约600℃左右)。氧化铝的密度3.95-4.10g/cm3,约为铝的1.4倍,氧化铝薄膜的表面易吸附水分,焊接时,它阻碍基本金属的熔合,极易形成气孔、夹渣、未熔合等缺陷,引起焊缝性能下降。
(2)易产生气孔。铝和铝合金焊接时产生气孔的主要原因是氢,由于液态铝可溶解大量的氢,而固态铝几乎不溶解氢,因此当熔池温度快速冷却与凝固时,氢来不及逸出,容易在焊缝中聚集形成气孔。氢气孔难于完全避免,氢的来源很多,有电弧焊气氛中的氢,铝板、焊丝表面氧化膜吸附空气中的水分等。实践,即使氩气按GB/T4842标准要求,纯度达到99.99% 以上,但当水分含量达到20ppm时,也会出现大量的致密气孔,当空气相对湿度超过80%时,如果不采取加热等措施,焊缝就会明显出现气孔。同时,采用小电流慢速焊,加大焊缝冷却时间,并利用焊丝电弧进行熔池搅动,可以较好的帮助气体排出熔池。
(3)焊缝变形和形成裂纹倾向大。铝的线膨胀系数和结晶收缩率约比钢大两倍,易产生较大的焊接变形的内应力,对刚性较大的结构将促使热裂纹的产生。
(4)铝的导热系数大(纯铝0.538卡/Cm.s.℃)。约为钢的4倍,因此,焊接铝和铝合金时,比焊钢要消耗更多的热量。
(5)合金元素的蒸发的烧损。铝合金中含有低沸点的元素(如镁、锌、锰等),在高温电弧作用下,极易蒸发烧损,从而改变焊缝金属的化学成分,使焊缝性能下降。
(6)高温强度和塑性低。高温时铝的强度和塑性很低,破坏了焊缝金属的成形,有时还容易造成焊缝金属塌落和焊穿现象。
(7)无色彩变化。铝及铝合金从固态转为液态时,无明显的颜色变化,使操作者难以掌握加热温度

容器规范采用的铝及铝合金 要求制造容器的材料具有良好的成形性和焊接性,JB/T4734-2002《铝制焊接容器》中采用的铝及铝合金有:
产业纯铝 1A85、1050A、1060和1200。
Al-Cu合金 2014。
Al-Mn合金 3003和3004。
Al-Mg合金 5A02、5A03、5A05、5052、5052、5058和5086。
Al-Mg-Si合金 6A02、6061和6063。
典型牌号铝及铝合金化学成分和力学性能,可查阅相关标准。
铝及铝合金的焊接工艺
铝及铝合金的焊接特点
(1) 铝在空气中及焊接时极易氧化,天生的氧化铝(Al2O3)熔点高、非常稳定,不易往除。阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易天生夹渣、未熔合、未焊透等缺欠。铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。焊接前应采用化学或机械方法进行严格表面清理,清除其表面氧化膜。在焊接过程加强保护,防止其氧化。钨极氩弧焊时,选用交流电源,通过“阴极清理”作用,往除氧化膜。气焊时,采用往除氧化膜的焊剂。在厚板焊接时,可加大焊接热量,例如,氦弧热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。
(2)铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。铝的热导率则是奥氏体不锈钢的十几倍。在焊接过程中,大量的热量能被迅速传导到基体金属内部,因而焊接铝及铝合金时,能量除消耗于熔化金属熔池外,还要有更多的热量无谓消耗于金属其他部位,这种无用能量的消耗要比钢的焊接更为明显,为了获得的焊接接头,应当尽量采用能量集中、功率大的能源,有时也可采用预热等工艺措施。
(3)铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需采取预防焊接变形的措施。铝焊接熔池凝固时轻易产生缩孔、缩松、热裂纹及较高的内应力。生产中可采用调整焊丝成分与焊接工艺的措施防止热裂纹的产生。在耐蚀性答应的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。在铝硅合金中含硅0.5%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,活动性明显进步,收缩率下降,热裂倾向也相应减小。根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi条(硅含量4.5%~6%)焊丝会有更好的抗裂性。
(4)铝对光、热的反射能力较强,固、液转态时,没有明显的光彩变化,焊接操纵时判定难。高温铝强度很低,支撑熔池困难,轻易焊穿。
(5)铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成氢气孔。弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。因此,对氢的来源要严格控制,以防止气孔的形成。
(6)合金元素易蒸发、烧损,使焊缝性能下降。
(7)母材基体金属如为变形强化或固溶时效强化时,焊接热会使热影响区的强度下降。
(8) 铝为面心立方晶格,没有同素异构体,加热与冷却过程中没有相变,焊缝晶粒易粗大,不能通过相变来细化晶粒。

4043是含硅5%的铝硅合金焊丝,常用作除铝镁合金以外的铝合金工件和铸件的氩弧焊及气焊时的填充材料。是一种通用的铝合金焊接用焊丝。
4043具有:流动性好,抗热裂能力强,但延展性不足、塑性和耐蚀性低的特点。
4043:可广泛用于船舶、机车、化工、建筑模具、食品、运动器材、模具、家具、容器、集装箱等行业。
常见的6系合金比如6061、6063母材即可用ER4043来焊接,它在阳氧化处理后的颜色为灰白色。

拉丝机安全操作规程为了更好地使快速拉丝机合理运作和产品品质获得确保,特制订本安全操作规程适用该设备台的任何商品生产制造主题活动和维护保养工作中与实际操作该高速加工中心的作业员和保养工作人员,务必互相配合,合力工作中,及时处理难题妥善处理。

一、熔化极气体保护电弧焊的概念及分类
使用熔化电极,以外加气体作为电弧介质,并保护金属熔滴,焊接熔池和焊接区高温金属的电弧焊方法,称为熔化极气体保护电弧焊。
根据焊丝材料和保护气体的不同,可将其分为以下几种方法,如图所示。
按焊丝分类可分为实芯焊丝焊接和药芯焊丝焊接。
用实芯焊丝的惰性气体(Ar或He)保护电弧焊法称为熔化极惰性气体保护焊,简称MIG焊(Metal Inert Gas Arc Welding).
用实芯焊丝的富氩混合气体保护电弧焊,简称MAG焊(Metal Active Gas Arc Welding)。
用实芯焊丝的CO2气体保护焊,简称CO2焊。



用药芯焊丝时,可以用CO2或CO2+Ar混合气体作为保护气体的电弧焊称为药芯焊丝气体保护焊。



还可以不加保护气体,这种方法称为自保护电弧焊。



二、普通MIG/MAG焊和CO2焊的区别
CO2焊的的特点是:成本便宜、生产。但是存在飞溅量大、成型差的缺点,因而有些焊接工艺采用普通MIG/MAG焊。



普通MIG/MAG焊是以惰性气体保护或以富氩气体保护的弧焊方法,而CO2焊却具有强烈的氧化性,这就决定了二者的区别和特点。



与CO2焊相比MIG/MAG焊的主要优点如下:
1) 飞溅量减少50%以上。在氩或富氩气体保护下的焊接电弧稳定,不但射滴过渡与射流过渡时电弧稳定,而且在小电流MAG焊的短路过渡情况下,电弧对熔滴的排斥作用较小,从而了MIG/MAG焊短路过渡的飞溅量减少50%以上。



2) 焊缝成形均匀、美观。由于MIG/MAG焊熔滴过渡均匀、细微、稳定,所以焊缝成形均匀、美观。



3) 可以焊接许多活泼金属及其合金。电弧气氛的氧化性很弱,甚至无氧化性,MIG/MAG焊不但可以焊接碳钢、高合金钢,而且还可以焊接许多活泼金属及其合金,如:铝及铝合金、不锈钢及其合金、镁及镁合金等。



4) 大大地提高了焊接工艺性、焊接质量和生产效率。



三、脉冲MIG/MAG焊和普通MIG/MAG焊的区别
普通MIG/MAG焊的主要熔滴过渡形式是大电流时的射流过渡和小电流时的短路过渡,因而小电流仍存在飞溅量大、成型差的缺点,尤其是有些活泼金属在小电流下无法焊接如铝及合金、不锈钢等。



因而出现了脉冲MIG/MAG焊,其熔滴过渡特点是每个电流脉冲过渡一个熔滴,就其实质而言属于射滴过渡。与普通MIG/MAG焊相比其主要特点如下:
1)脉冲MIG/MAG焊的佳熔滴过渡形式是一个脉冲过渡一个熔滴。这样通过调节脉冲频率就能够改变单位时间内熔滴过渡的滴数,也就是焊丝熔化速度。



2)由于一脉一滴的射滴过渡,熔滴直径大致与焊丝直径相等,则熔滴电弧热较低,也就是熔滴温度低(与射流过渡和大滴过渡相比)。所以提高了焊丝的熔化系数,也就是提高了焊丝的熔化效率。



3)因熔滴温度低,所以焊接烟雾少。这样一方面降低了合金元素的烧损,另一方面改善了施工环境。



与普通MIG/MAG焊相比其主要优点如下:
1)焊接飞溅小,甚至无飞溅。
2)电弧指向性好,适于全位置焊接。
3)焊缝成形良好,熔宽较大,指状熔深特点减弱,余高小。
4)小电流焊接活泼金属(如铝及其合金等)。扩大了MIG/MAG焊射流过渡的使用电流范围。脉冲焊时焊接电流从射流过渡的临界电流附近一直到几十安的较大电流范围内均可实现稳定的射滴过渡。



由上述可知脉冲MIG/MAG的特点和优点,但是任何事物都不可能无缺的。和普通MIG/MAG相比其不足之处如下:
1) 焊接生产效率习惯性感觉略低。
2) 对焊工人员素质要求较高。
3) 目前来说焊接设备价格较高。



三、脉冲MIG/MAG焊的选用主要工艺决定
针对以上对比结果,脉冲MIG/MAG焊虽然有诸多优点是其它焊无法实现和比拟的,但是其同样存在设备价格高、生产效率略低、焊工不易掌握的问题。所以脉冲MIG/MAG焊的选用主要由焊接工艺要求决定的。就目前国内的焊接工艺标准,以下焊接基本上使用脉冲MIG/MAG焊。
1)碳钢类。对焊缝质量、外观要求较高的场合,主要是压力容器行业,如锅炉、化工换热器、中央空调换热器,还有水电行业水轮机的涡壳等。
2)不锈钢类。使用小电流(200A以下在此称小电流,下同)和对焊缝质量、外观要求较高的场合,如机车、化工行业的压力容器等。
3)铝及其合金类。使用小电流(200A以下在此称小电流,下同)和对焊缝质量、外观要求较高的场合,如动车、高压开关、空分等行业。尤其是动车,包括南车集团四方车辆车、唐山车辆厂和长客等及为他们外协加工的小厂家。据业内消息,到2015年国内所有省会和人口超过50万的城市均实现通动车,可见动车的需求量之大,焊接工作量和焊接设备的需求之大。
4)铜及其合金类。根据目前的了解情况,铜及其合金基本上都使用脉冲MIG/MAG焊(在熔化极气保焊范围内)。

下一条:湖南铝硅焊丝铝锰青铜焊丝
山东上焊焊接材料有限公司为你提供的“上海铝硅焊丝铝硅焊丝4043”详细介绍
山东上焊焊接材料有限公司
主营:耐磨焊条焊丝,钴基焊条焊丝
联系卖家 进入商铺

上海铝硅焊丝信息

最新信息推荐

进店 拨打电话 微信