太原304沉淀池供应商,澄清池
-
面议
为避免短流,一是在设计中尽量采取一些措施(如采用适宜的进水分配装置,以消除进口射流,使水流均匀分布在沉淀池的过水断面上,降低紊流并防止污泥区附近的流速过大,采用指形出水槽以延长出流堰的长度;沉淀池加盖或设置隔墙,以降低池水受风力和光照升温的影响;高浓度水经过预沉,以减少进水悬浮固体浓度高产生的异重流等);二是加强运行管理,在沉淀池投产前应严格检查出水堰是否平直,发现问题,要及时修理。在运行中,浮渣可能堵塞部分溢流堰口,致使整个出流堰的单位长度溢流量不等而产生水流抽吸,操作人员应及时清理堰口上的浮渣;用塑料加工的锯齿形三角堰因时间关系,可能发生变形,管理人员应及时维修或更换,以出流均匀,减少短流。通过采取上述措施,可使沉淀池的短流现象降低到小限度。
沉淀池一般是在生化前或生化后泥水分离的构筑物,多为分离颗粒较细的污泥。在生化之前的称为初沉池,沉淀的污泥无机成分较多,污泥含水率相对于二沉池污泥低些。位于生化之后的沉淀池一般称为二沉池,多为有机污泥,污泥含水率较高。
异向流斜管沉淀池的水力计算可归纳为如下三种:
2.1分离粒径法:
可分离颗粒的粒径dp可表示为:
若用可分离颗粒沉速us来表示,则:
式中:Q—onclick=g(沉淀池)>沉淀池流量
η——有效系数;
μ——颗粒沉降速度,m/s;
Af——斜板水平投影面积之总和,m;
A′f——斜板实际总面积,m;
θ——斜板倾斜角度,(°);
l——斜板斜长,m;
h——斜板安装高度,m;
B——池宽,m;
v——板内流速,m/s;
P——水平板距,m;
N——斜板间隔数;
L——斜板组合全长(相当于池长),m;
h1——积泥高度 (泥斗高度),m;
h2——配水区高度,m;
h3——保护高度,m;
H——沉淀池总高度,m;
t——颗粒沉降需要时间,s;
L′——颗粒沉降需要长度,m。
按照沉淀不理的端面所求得的可分离沉速usc与us关系为:usc=us,s为一常数。S值被称为斜管的特性参数,虽断面形状而定。
考虑到颗粒沉淀过程中的絮凝因素,假设颗粒的沉速以等加速改变,并设起始沉速为零。结合考虑管内的流速分部,则斜管长度为颗粒沉速变化的加速度,即上诉三种方法,各有不足之处,在还没有更完善的斜管沉淀池计算方法之前,认为分离粒径可作为斜管沉淀计算的出发点。斜管沉淀池的流态设计
进入沉淀池的水流,在池中停留的时间通常并不相同,一部分水的停留时间小于设计停留时间,很快流出池外;另一部分则停留时间大于设计停留时间,这种停留时间不相同的现象叫短流。短流使一部分水的停留时间缩短,得不到充分沉淀,降低了沉淀效率;另一部分水的停留时间可能很长,甚至出现水流基本停滞不动的死水区,减少了沉淀池的有效容积。总之短流是影响沉淀池出水水质的主要原因之一。形成短流现象的原因很多,如进入沉淀池的流速过高;出水堰的单位堰长流量过大;沉淀池进水区和出水区距离过近;沉淀池水面受大风影响;池水受到阳光照射引起水温的变化;进水和池内水的密度差;以及沉淀池内存在的柱子、导流壁和刮泥设施等,均可形成短流形象。
及时排泥是沉淀池运行管理中极为重要的工作。污水处理中的沉淀池中所含污泥量较多,有绝大部分为有机物,如不及时排泥,就会产生厌氧发酵,致使污泥上浮,不仅破坏了沉淀池的正常工作,而且使出水质恶化,如出水中溶解性BOD值上升;pH值下降等。初次沉淀的池排泥周期一般不宜超过2日,二次沉淀池排泥周期一般不宜超过2小时,当排泥不时应停池(放空)采用人工冲洗的方法清泥。机械排泥的沉淀池要加强排泥设备的维护管理,一旦机械排泥设备发生故障,应及时修理,以避免池底积泥过度,影响出水水质。