角直镇IGBT模块回收规格
-
¥666.00
由于IGBT模块为MOSFET结构,IGBT的栅通过一层氧化膜与发射实现电隔离。由于此氧化膜很薄,其击穿电压一般达到20~30V。因此因静电而导致栅击穿是IGBT失效的常见原因之一。
IGBT模块由于具有多种优良的特性,使它得到了快速的发展和普及,已应用到电力电子的各方各面。因此熟悉IGBT模块性能,了解选择及使用时的注意事项对实际中的应用是十分必要的。
由于IGBT在电能转换中扮演的重要角色,它能够为各种高电压和大电流应用提供更高的效率和节能效果,被广泛应用于工业控制、新能源、变频家电等领域。特别是在新能源汽车中,IGBT 模块占电动车整车成本约5%左右,是除电池之外成本第二高的元件。根据IHS预测,全球汽车电动化用IGBT模块未来5年复合增长率高达23.5%。目前国内IGBT供需差距,国产量仅为市场销量的七分之一。
2018 年 IGBT 模块需求量为7898万只,但是国内产量只有1115万只,供需缺口。据业内人士透露,IGBT整体市场规模会保持每年10%以上的增长速度,主要受益于新能源汽车行业的发展。但是国产IGBT的增长速度会远此,以上市公司斯达半导体为例,2016年至2018年,连续保持45%以上的增长率。国内诸多公司以IGBT为主营业务的公司实现了高速增长。
随着IGBT芯片技术的不断发展,芯片的高工作结温与功率密度不断提高, IGBT模块技术也要与之相适应。未来IGBT模块技术将围绕 芯片背面焊接固定 与 正面电互连 两方面改进。模块技术发展趋势:无焊接、 无引线键合及无衬板/基板封装技术;内部集成温度传感器、电流传感器及驱动电路等功能元件,不断提高IGBT模块的功率密度、集成度及智能度。
静态特性
三菱制大功率IGBT模块
三菱制大功率IGBT模块
IGBT 的静态特性主要有伏安特性、转移特性。
IGBT 的伏安特性是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs 的控制,Ugs 越高, Id 越大。它与GTR 的输出特性相似.也可分为饱和区1 、放大区2 和击穿特性3 部分。在截止状态下的IGBT ,正向电压由J2 结承担,反向电压由J1结承担。如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT 的某些应用范围。
IGBT 的转移特性是指输出漏极电流Id 与栅源电压Ugs 之间的关系曲线。它与MOSFET 的转移特性相同,当栅源电压小于开启电压Ugs(th) 时,IGBT 处于关断状态。在IGBT 导通后的大部分漏极电流范围内, Id 与Ugs呈线性关系。高栅源电压受大漏极电流限制,其佳值一般取为15V左右。
关于转换电压变化率
当驱动一个大的电感性负载时,在负载电压和电流间有一个很大的相移。当负载电流过零时,双向可控硅(晶闸管)开始换向,但由于相移的关系,电压将不会是零。所以要求可控硅(晶闸管)要迅速关断这个电压。如果这时换向电压的变化超过允许值时,就没有足够的时间使结间的电荷释放掉,而使双向可控硅(晶闸管)回到导通状态。
为了克服上述问题,可以在端子MT1和MT2之间加一个RC网络来限制电压的变化,以防止误触发。一般,电阻取100R,电容取100nF。值得注意的是此电阻不能省掉。
1、日本三社SanRex:可控硅模块;二极管模块;三相整流桥模块。
2、德国西门]康SEMIKRON: IGBT模块;可控硅模块;二极管模块;三相整流桥模块;平板型可控硅;螺栓型可控硅;螺栓型二极管。
3、德国英飞凌Infineon: IGBT模块; PIM模块;可控硅模块。
4、德国艾赛斯IXYS:快速恢复二极管模块;可控硅模块。
5、日本三菱MITSUBISHI: IGBT模块; IPM模块; PIM模块。
6、日本富士FUJI: IGBT模块; IPM模块;三相整流桥模块。
7、美国威士VISHAY:螺栓二极管;螺栓可控硅。
8、日本东芝TOSHIBA: IGBT模块;整流桥模块; GTO门极关断可控硅。
9、IGBT无感吸收电容:美国CDE;加拿大EACO:德国EPCOS。
10、英国西码WESTCODE:平板型可控硅;平板型二极管;螺栓型可控硅、螺栓型二极管。
11、意大利POSEICO:平板型可控硅;平板型二极管。
12、英国达尼克斯DYNEX:平板型可控硅;平板型二极管、GTO ]极可关断可控硅
13、瑞士ABB:平板型可控硅;平板型二极管、GTO门极可关断可控硅。
14、快速熔断器:美国BUSSMANN。