宜春316L喷氨格栅报价
-
面议
通常设计喷氨格栅(AIG)是将烟道截面划分为若干个控制区域,每个控制区域有若干的喷射孔。喷氨格栅包括喷氨管道、支撑、配件和氨气分布装置等。设计时,喷氨格栅的位置及喷嘴形式是根据锅炉尾部烟道的布置情况,通过模拟流场试验来选择的。同时,应通过烟道设计的优化及加设烟气导流板,使进入SCR反应器的烟气气流保持均匀。喷氨格栅设计不当或烟气气流分布不均匀时,容易造成NOx和NH。
喷氨格栅设计不当或烟气气流分布不均匀时,容易造成NOx和NH3的混合及反应不均匀,不但影响脱硝效率及经济性,而且极易造成局部喷氨过量。脱硝装置投运前,应调整烟气气流的分布情况,调整各氨气喷嘴阀门的开度,使各氨气喷嘴流量与烟气中需还原的NOx含量相匹配,以免造成局部喷氨过量。
喷氨格栅主要优点: 模块化设计,便于运输安装; 在喷嘴上部设置扰流装置,进一步加大喷氨均匀性; 喷嘴具有防堵塞功能 横向、纵向喷射量均可调节,可控度高; 每一个喷氨格栅都针对具体项目做流场模拟分析,确保喷氨均匀
紫外线烟气分析仪(如图1)以紫外差分吸收光谱技术为核心的新型产品,广泛应用于环境监测以及热工参数测量等部门。分析仪采用命脉冲氙灯、耐腐蚀吸收池、进口高分辨率光谱仪、工控板、传感器及新材料领域的高新技术,用于测量SO2、NOx等有害气体的浓度,与使用电化学传感器测量方法的仪器相比,具有测量精度高、可靠性强、响应时间快等优点。
选择性催化还原技术是当前世界上脱氮主流工艺。火电厂大气污染物排放控制标准GB13223-2011的颁布使国内在短期内大面积投运SCR脱硝系统,相关学者[1-7]在流场、系统模拟方面也做了较多研究;但在运行优化方面前期缺乏积累,逐渐暴露出诸如效率不稳、空气预热器堵塞严重,甚至炉膛负压波动剧烈,不得不停炉吹扫等问题[8-11]。
尤其是环保排放标准的进一步严苛后,大部分机组面临“超净排放”的需求,对SCR反应器内的速度场、浓度场、喷氨格栅喷射三者之间的耦合提出了更高要求,系统均流与混合是脱硝系统运行优化的关键之一[12-16]。
本文拟以安徽芜湖电厂660MW机组2#炉SCR脱硝装置为对象,通过现场测试,调整氨喷射系统各支管的气氨流量,以消除局部过大的氨逃逸区域,改善入口氨喷射均匀性,大限度减少氨逃逸对空预器的影响,提出有效的喷氨格栅优化与均匀混合实施方案。
通过网格布点测量SCR装置的入口及出口烟道,烟道共布置10个测孔,编号依次为B5→B1、A5→A1,其中NO、O2取样点共选取2×5×5个(取深度方向5点均值),NH3取样点共选取2×5×1个,具体布置如图1所示。NO、O2经Testo350烟气分析仪直接测定,氨逃逸样品采用美国EPA的CTM-027标准以化学溶液法采集,取样时间20min。通过分析样品溶液中的氨浓度(见图2),并根据所采集的干态烟气流量和O2,计算各点干基烟气NH3浓度。
两侧反应器总体风量较均匀,受负荷波动性较小。此外,反应器入口烟道烟气流速分布均匀,其中B侧烟气流速偏差分别为0.4、0.8、0.5m•s-1,相对偏差分别为2.8、7.1、6.0%,A侧内外侧偏差为1.3、0.6、0.6m•s-1,相对偏差分别为9.4%、5.7%、7.2%。这表明速度场的波动对喷氨格栅优化调整基本没有影响。