七台河报废过期化工新材料收购
-
面议
近年来,全球化工新材料产业发展整体步入高技术、产品迭代速度快、产业规模和需求不断扩大的阶段。从全球来看,美国、日本、欧洲等国家和地区的新材料发展较为。陶氏化学、埃克森美孚、巴斯夫、三菱化学等国际公司在核心技术、市场占有率等方面占据优势。新材料作为我国新兴战略性产业之一,在发展的要求下仍然有较大的提升空间。
陶氏化学、埃克森美孚、巴斯夫等国际大公司之所以能成为全球化工新材料行业的执牛耳者,关键在于出奇制胜的新材料业务策略,概括起来包括以下几个方面。
一是原料成本相对较低且进行全生命周期评价。陶氏化学、埃克森美孚充分发挥北美地区乙烷原料资源优势,降低乙烯等基础化工原料和下游新材料的生产成本;同时对新材料的原料来源、合成过程、加工设计、使用过程、废弃回收、循环利用等全生命周期进行评价,将绿色低碳技术融入其中,为客户提供的化工新材料可持续发展方案。
二是保持技术与全链条服务策略。陶氏化学、埃克森美孚、巴斯夫、三菱化学都能在自己的优势领域持续强化研发创新,形成具有国际竞争力的代表性技术,在全球保持地位。陶氏化学通过搭建聚烯烧业务包装大师网络、聚氨酯业务舒适科技实验室以及汽车用材料业务平台,与全球各地的科学家、品牌商、加工商、包装设计师密切协作,链接整个包装价值链,按客户需求提供从产品生产、加工应用到技术服务全链条的整体解决方案。
三是注重产品全系列化、品牌化。各大公司普遍重视开发性能、用途各异的新材料,形成丰富的差异化产品组合,打造产品品牌,不断拓展市场份额。巴斯夫将其400多个牌号的聚酰胺产品(尼龙)汇聚在Ultramid品牌旗下,可为用户提供全系列的尼龙树脂及其改性产品,成为全球尼龙产品的主要供应商。该公司致力于为用户量身定制系统解决方案或功能性材料,每年可向市场推出300款以上的新产品。
经历了2008年一遇的金融危机的冲击后,2009年随着各国刺激经济政策渐显成效,世界经济逐渐企稳复苏。中国经济更是率先起步,在强大的刺激政策与存货调整周期的作用下,2009年中国宏观经济成功走出了自2008年3季度以来深度下滑的低谷,实现“V”反转,实体经济出现超预期反弹。2009年我国石化工业也迅速回暖,开工率回升,产量产值稳步增长,企业亏损额减少。据统计,2009年1-11月,我国化学工业累计产值35315.7亿元,相较去年同期的累计产值32872.3亿元,同比增长7.4%。截止至2009年11月,我国化学工业累计实现产品销售收入34588亿元,同比增长6.5%;资产总计为32486亿元,同比增长12.9%;利润总额为1718亿元,同比增长13.5%。企业数为31966家,亏损企业数为4984家,同比增长11.2%,亏损企业亏损额为340.47亿元,同比下降16%。从业人员年均人数为491.14万人,比上年同期增加了3%。化工行业增加值同比增长15.1%,增速同比加快4.4个百分点。主要产品中,烧碱产量1763万吨,增长6.8%。纯碱产量1837万吨,增长7.2%。化肥产量6051万吨,增长14.3%;其中,氮肥、磷肥、钾肥产量分别增长12.8%、18.4%和18.5%。农药产量204万吨,增长12%。橡胶轮胎外胎产量59734万条,增长15.6%。电石产量1374万吨,增长4.7%。
当前世界新材料产业的发展方向主要集中于生物医用材料、新能源材料、航空航天材料、生态环境材料、纳米材料、超导材料等领域,在发展高新技术、改造和提升传统产业、增强综合国力和实力等方面起着越来越重要的作用。
为推动新材料产业的发展,相关政策更是密集发布。
2010年10月,发布了《关于加快培育和发展战略性新兴产业的决定》,将包括新材料产业在内的七个产业领域列为战略性新兴产业,提出要以我国在纳米、超导、稀土等材料科学技术研究方面的优势为基础,以满足国家重大工程建设和产业结构升级为目标,巩固学科研究优势,大力发展新材料制备技术和装备,大力推进新型材料产业化,大力推进大宗材料规模化生产应用。
2012年12月,工业和信息化部出台《新材料产业“十二五”发展规划》,提出了六大领域、20个发展方向,从研发、产业化和市场应用等环节对每一个的发展途径、发展方向、主要产品、关键应用等进行了详细安排。
2015年5月8日,正式印发《中国制造2025》,新材料作为“中国制造2025”
规划锁定的领域之一,迎来更强劲的发展机遇。
办公厅今年2月18日发布的《关于加快众创空间发展服务实体经济转型升级的指导意见》提出,在制造业、现代服务业等产业领域强化企业、科研机构和高校的协同创新,加快建设一批众创空间。新材料作为该《意见》涵盖的产业之一赫然在列。
能源材料主要有太阳能电池材料、储氢材料、固体氧化物电池材料等。
太阳能电池材料是新能源材料,IBM公司研制的多层复合太阳能电池,转换率高达40%。
氢是、的理想能源,氢的利用关键是氢的储存与运输,美国能源部在全部氢能研究经费中,大约有50%用于储氢技术。氢对一般材料会产生腐蚀,造成氢脆及其渗漏,在运输中也易爆炸,储氢材料的储氢方式是能与氢结合形成氢化物,当需要时加热放氢,放完后又可以继续充氢的材料。储氢材料多为金属化合物。如LaNi5H、Ti1.2Mn1.6H3等。
固体氧化物燃料电池的研究十分活跃,关键是电池材料,如固体电解质薄膜和电池阴极材料,还有质子交换膜型燃料电池用的有机质子交换膜等。
物化性能 纳米颗粒的熔点和晶化温度比常规粉末低得多,这是由于纳米颗粒的表面能高、活性大,熔化时消耗的能量少,如一般铅的熔点为600K,而20nm的铅微粒熔点低于288K;纳米金属微粒在低温下呈现电绝缘性;钠米微粒具有的吸光性,因此各种纳米微粒粉末几乎都呈黑色;纳米材料具有奇异的磁性,主要表现在不同粒径的纳米微粒具有不同的磁性能,当微粒的尺寸某一临界尺寸时,呈现出高的矫顽力,而低于某一尺寸时,矫顽力很小,例如,粒径为85nm的镍粒,矫顽力很高,而粒径小于15nm的镍微粒矫顽力接近于零;纳米颗粒具有大的比表面积,其表面化学活性远大于正常粉末,因此原来化学惰性的金属铂制成纳米微粒(铂黑)后却变为活性的催化剂。
扩散及烧结性能 纳米结构材料的扩散率是普通状态下晶格扩散率的1014~1020倍,是晶界扩散率的102~104倍,因此纳米结构材料可以在较低的温度下进行有效的掺杂,可以在较低的温度下使不混溶金属形成新的合金相。扩散能力提高的另一个结果是可以使纳米结构材料的烧结温度大大降低,因此在较低温度下烧结就能达到致密化的目的。
力学性能 纳米材料与普通材料相比,力学性能有显著的变化,一些材料的强度和硬度成倍地提高;纳米材料还表现出超塑性状态,即断裂前产生很大的伸长量。
新材料技术是按照人的意志,通过物理研究、 材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。新材料按材料的属性划分,有金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、复合材料四大类。按材料的使用性能性能分,有结构材料和功能材料。结构材料主要是利用材料的力学和理化性能,以满足高强度、高刚度、高 硬度、耐高温、耐磨、耐蚀、抗辐照等性能要求。隐身材料能吸收电磁波或降低武器装备的红外辐射,使敌方探测系统难以发现, 新材料技术被称为“发明之母”和“产业粮食”。