华为UPS电源8000VA生产厂家
-
¥3000.00
内阻过大的需及时更换:
内阻过大双登蓄电池使用时间过久或导致活性下降、内阻过大,表明该双登蓄电池需要更换!
(1)、随UPS电源使用时间的,总有部分双登蓄电池的充放电特性会逐渐变坏,端电压明显下降,这种双登蓄电池的性能不可能再依靠UPS电源内部的充电电路来解决,继续使用会存在隐患,应及时更换。
(2)、对于双登蓄电池内阻,用正常的充电电压对双登蓄电池进行充电已不能使双登蓄电池恢复其充电特性的双登蓄电池应及时更换。双登蓄电池的内阻一般在10~30mΩ,如双登蓄电池的内阻超过200mΩ上,将不足以维持UPS的正常运行,对内阻偏大的更换。
采用AGM阀控技术、高纯的原辅材料、多项自主专利技术,具有良好的浮充和循环寿命,大电流性能好,是UPS/EPS电源理想的、可靠的备用电源;SP系列电池同样广泛应用在通讯设备、电力合闸操作、储能系统、电动工具、设备、应急灯、航标灯、铁路信号、航空信号、报警、安防系统、仪器、仪表等。
圣阳蓄电池12V24AH产品特征
1. (C20):3.5Ah—250Ah(25℃)
2. :12V
3. 自放电小:≤2%/月(25℃)
4. 良好的高率放电性能
5. 设计寿命长:20Ah以下为5年、20Ah以上为10年(25℃)
6. 密封反应效率:≥98%
7. 工作温度范围宽:-15℃~45℃
结构特点
· 安全阀:高灵敏度的安全阀,可以有效电池使用过程中安全;
p>
额定电压
20h率容量(Ah)
应用领域:
程控交换机、通信、UPS不间断电源、器械、消防和安保系统、应急灯、变电所操作用直流电源
性能特点:
安全性能好
电解液形式为胶体(凝胶固体),不存在液体稀硫酸泄露问题,硫酸电解液由凝胶包围着,不会流出电池。
阀控密封式结构,当电池内气压偶尔偏高时,可通过安全阀的自动开启,泄掉压力,安全,内部产生可燃爆性气体聚集少,达不到燃爆浓度,防爆性能。
免维护性能
利用阴极吸收式密封免维护原理,气体密封复合效率超过95%,正常使用情况下失水极少,电池无需定期补液维护。
绿色环保
正常充电下无酸雾,不污染机房环境、不腐蚀机房设备。
自放电小
电解液密度相对较低,自放电更低,在20℃的干爽环境中放置1年,无需补电即可投入正常使用。
耐高温环境
松装配,电解液“富液式”,胶体热容较大,散热性能优于贫液式电池,耐50℃高温,无热失控。
低温性能好
可-25℃低温工作,硫酸电解质存在于胶体中,内阻虽稍大,但在低温时胶体电解质内阻变化不大,故其低温性能相对较好。
过放电、深放电性能好
“富液式”,的含磷酸胶体和高锡正极板合金,电池的过放电、深放电恢复能力。
寿命长
厚极板耐腐蚀设计,电解液密度相对较低,同时浮充电压可较低,浮充电流相对较低,对板栅腐蚀较轻,浮充寿命更长;同时电解液“富液式”,对失水的敏感性较低,寿命相对较长,NPJ系列设计寿命10~15年(≥38Ah以上)。
电池组一致性好
不计成本的电池组中的每一个电池具有相对一致的特性,确保在投入使用后长期的放电一致性和浮充一致性,不出现个别落后电池而拖垮整组电池。
从源头的板栅、涂膏量的重量和厚度开始控制;
总装前再逐片极板称重分级(≥38Ah的电池),确保每个单体中活性物质的量的相对一致性;
定量注酸,四充三放化成制度,均衡电池性能;
下线前对电池进行放电,进行容量和开路电压的一次配组;
≥38Ah的电池出库前的静置期检测,经过7~15天的“时间考验”,出库时再检,能有效检出下线时难以检出的极个别疑虑电池;
出库时依据电池的开路电压和内阻进行二次配组。
不过按照电力标准,次放电实验放出95%的容量属于合格,也就是说放到9小时30分的时候就可以停了。2、直流屏上接着负载,比如站公用设备、高低压开关设备等使用直流电的设备。在站用变停电后,直流屏瞬间转为蓄电池供电,直到电力回复正常,蓄电池就转入充电状态。
更换电池组:一般直流屏都有备份,2组蓄电池互相备份,你将其中一组蓄电池断开,用另外一组供2台直流屏,这时候这组蓄电池就可以更换了,更换前先把电池巡检全断开,避免有小火花,然后再把蓄电池组中任意一个链接条断开,这样就安全了。
另外变电站要求安全运行,不考虑成本,所以变电站内为了保持电池的电量,把电池长期处于浮充电状态,这种充电为过充电,使电池失水严重。电解液的浓度上升,使得极板硫化,电池的内阻就,容量下降。定期的给电池补水,就能保持电池的容量。
站内直流系统对蓄电池的运行要求蓄电池作为站内直流系统的备用电源,要求平时保持在一定的充电水平,以便在直流屏高频开关电源或硅整流装置交流失电,发生故障导致不能输出直流电源时,能及时投入,从而不影响站内直流设备和直流回路的正常运行。
只有这样,才能站内直流系统的安全可靠运行..UPS电源使用的蓄电池,一般为阀控式铅酸蓄电池,其基本特点是使用期间不用加酸加水维护,电池为密封结构,不会漏酸,也不会排酸雾,电池盖子上设有单向排气阀,当电池内部气体压力升高到一定值时,排气阀自动打开.排体,然后自动关闭,防止空气进入电池内部,该种。
因此,蓄电池本身性能应能满足其容量、电压在一定时间内(包括直流电源装置检修期间),维持在较高水平。1、阀控式铅酸蓄电池工作原理铅酸蓄电池工作原理就是充电时将电能转化为化学能在电池内储存起来,放电时将化学能转化为电能供给外系统。
其中,电压检测技术主要是由绝缘监察来实时监测正、负直流母线的对地电压,通过对地电压计算出正负母线对地绝缘电阻。当绝缘电阻低于设定的报警值时,发送出告警信号。由于母线对地绝缘电阻检测方法中的测量对象是直流回路上的电压,而不管在系统的直流回路中任何一点发生接地故障或绝缘度下降,都会引起系统母线电压的变化。
因此就能够迅速地在绝缘监察系统中反映出来。电池在开路状态下的端电压称为开路电压。电池的开路电压等于电池在断路时(即没有电流通过两极时),电池正极的电极电势与负极的电极电势之差。以电池LC-P系列为例,LC-P12-100是12V的蓄电池,标称电压为12V,当冲满电时,电池电压应大于12.8V,此电压即为“开路电压”。
开路电压的高低也可以反映电池状态,当开路电压小于12.7V时,即认为电池处于未充满电状态,此时在安装前需要给电池进行补电,否则极有可能出现在UPS放电回冲后,出现浮充电压不均的情况,或是频繁出现个别电池内阻上升的情况,给后期维护和系统稳定造成隐患。
当开路电压小于12V时,如果充电后仍未大于12.7V,此时极有可能是电池内部出现了故障,应及时给予更换或和相关技术人员联系。这种电池不能再次使用,如果接入电池组,将会造成其它的电池浮充电压增高,以致出现过充情况,甚至引起整串电池的“热失控”。
(2)浮充电压(FloatVoltage)当电池处于充满状态时,充电器不会停止充电,仍会提供恒定的浮充电压与很小浮充电流供给电池,此时的电流大约在0.0002~0.005C左右。这个电流就是为了补偿蓄电池的自放电情况,实时处于充满状态,随时可投入后备运行。
推荐的浮充电压在13.5~13.8v@25°。如果蓄电池的浮充电压低于13.3V时,在蓄电池某间隔内可能发生了短路。此时需要对蓄电池进行及时更换或和相关技术人员联系蓄电池组充电方式的缺陷现在有很多消费者问我蓄电池组充电方式存在缺陷有哪些。
现今大部分后备电源(直流系统,ups等)中能量的存储都是用蓄电池组来实现的那么作为不间断供电的后一道的蓄电池组的充电就显得至关重要了半导体变流技术及成本的原因我一直采用的充电方式是单充电机对整组串联蓄电池充电。
1单体蓄电池特点存在较大差异,即便是同一批出厂的蓄电池其特点也偏差较大(国产电池中表现的尤为)因此在运行中将其作为一个整体一起充放电,无法根据单电池运行参数运行状态进行充放电,势必造成某些电池过充电或欠充电,也可能引起过放电,这也是为什么蓄电池在成组运行时普遍达不到标称寿命的重要原因之一。
下面我就给大家详细讲解一下蓄电池组充电方式存在缺陷有哪些。2此种运行方式中检测单体电池的电压、内阻是比较困难的现在普遍采用的单加装蓄电池检测装置,但蓄电池检测装置又不能很好的和充电机配合。从以上两点我可以看出在此系统中按电池状态(电压、内阻、剩余容量、温度等参数)及充电曲线对蓄电池进行管理只不过是一句空话。
3随着半导体技术的进步,高频开关电源以其体积小,重量轻,,噪声小的优势大有取代激进晶闸管整流电源的趋势,但是采用如方案一中的充电方式,因为充电机需要提供较高的充电电压和较大的输出容量,对器件和技术以及工艺要求很高,大家都知道IGBT很难超过20KHz而MOS-FET如果用于大电流回路中起结压降。
全球能源频现,而数据中心一直以来都被带上"耗能大户"的帽子,减少数据中心能耗,提高能源与设备能效。一直都是数据中心所努力的方向。据美国节能联盟资料显示,如果数据中心的能效保持不变,那么数据中心的电费和用电量需求将在不到10年内翻倍。
电力资源将会变得更加与昂贵,那么如果提高数据中心供电系统的供电效率呢?小编为大家总结了一下几点建议:1、提高设备容量利用率(1)精细系统容量规划设计,避免设备过渡规划。(2)采用模块化设计,实现设备容量的动态增长(up设备本身效率调高8%左右)(3)供电方案优化设计,降方案的复杂性。
2、配置"高频机"设备(1)提高设备本身效率(2%~3%左右)(2)降低交流输入系统供电设备和线缆的容量和传输耗损(效率提高3%~5%左右)3、采用380V直流UPS供电系统提高UPS设备本身和IT设备内开关电源运行效率4、UPS系统设置"经济运行"模式提高系统运行效率(10%~12%左右)5、。
这种差别叫电势差,也叫电压。换句话说,在电路中,任意两点之间的电位差称为这两点的电压。通常用字母U代表电压,电压的单位是伏特(V),简称伏,用符号V表示。高电压可以用千伏(kV)表示,低电压可以用毫伏(mV)表示,也可以用微伏(μv)表示。
电压是产生电流的原因。蓄电池的电压又称电动势,蓄电池内有正、负两个电极,电动势是两个电极的平衡电极电位之差,以铅酸蓄电池为例,E=Ф+0-Ф-0+RT/FIn(αH2SO4/αH2O)。每个电池都有内阻。