海淀求购钴酸锂废钴粉现金交易
-
¥188.00
钴酸锂仍是小型锂电池的佳选择。目前在3C电子电池中,大多数仍使用钴酸锂而并非比容量更高的三元材料,原因是钴酸锂材料的压实密度大于三元材料,即单位体积内能容纳的钴酸锂量更多。在更为重视体积密度的小型电池中,钴酸锂占有着一席之地。
钴酸锂理论容量高,但实际容量却只有理论的一半。原因是在充电过程中锂离子要从钴酸锂材料中脱出,但脱出量小于50%时,材料的形态和晶型可以保持稳定。
随着锂离子脱出量增大至50%时,钴酸锂材料将发生相变,如果此时继续充电,钴将溶解在电解液中并产生氧气,严重影响电池循环稳定性和安全性能,因此一般的钴酸锂充电截止电压为4.2V。
在钴酸锂电极材料的探索中,高电压钴酸锂的探索一直是萦绕在研究人员心中。
在早期的钴酸锂探索中,当电压4.25V时,电池的循环性能出现了快速的衰减,此时钴酸锂材料六方晶相开始向单斜相转变。
相关研究表明单斜相变与电池性能衰减之间的关系如下:相变过程中材料体积变化导致材料性能变化;相变不可逆造成容量衰减与结构破坏;表面副反应进一步加剧;过渡金属溶解加速Li源消耗;氧参与电荷转移进一步氧化电解液。随着对材料改性技术的运用,相关高电压钴酸锂材料取得了长足的进步
当电压4.6V时材料相变就难以控制,主要体现为:1.相变动力学变差,导致内阻在高电位下增加;2.结构巨变,O3结构消失;3.晶胞参数剧烈膨胀收缩;4.滑移相变不完全可逆造成容量电压衰减。晶胞参数巨变的宏观表现使材料颗粒体积膨胀及收缩,同时颗粒的变化又导致电极材料发生改变引起电芯衰减。
为解决高电压钴酸锂应用需对高压区间相变过程进行设计与调控增强循环可逆性。对于商业应用的电芯来说,除了考虑电芯的膨胀率意外还应考虑到高膨胀系数对电极涂覆材料、材料抗拉伸强度、电芯封装材料都提出了更高的要求。