泸州门座起重机模型_生物质气化炉新能源模型
-
≥ 60立方¥150.00
1、AP1000MW核电站模拟实训模型
规格:4000×1500×1800mm
由核电站厂房、核岛和常规岛组成,如图2所示;包括:核岛、汽轮机厂房、附属厂房、柴油发电机厂房和放射性废物厂房。核岛由安全壳厂房、屏蔽厂房和核辅助厂房组成,核岛的四大部件是蒸汽发生器、稳压器、主泵和堆芯。在核岛中的系统设备主要有压水堆本体,一回路系统,以及为支持一回路系统正常运行和反应堆安全而设置的辅助系统。常规岛模型主要包括汽轮机组及二回等系统;各设备工质管道采用LED灯光流动演示;
(1)核电站厂房模型包括:
1)安全壳厂房:是安全壳容器以及该容器内所含的所有结构;主要系统是反应堆冷却剂系统、安全系统。
2)屏蔽厂房: 是环绕安全壳容器结构和环形区域^fen^屏蔽厂房与安全壳厂房内部结构,为安全壳内反应堆冷却剂系统和所有其它放射性系统提供屏蔽保护。
3)辅助厂房:位于安全壳厂房外安全相关抗震Ⅰ类机械和电气设备提供保护隔离^fen^ 有: 主控室、仪控系统、电气系统、燃料吊装区、燃料厂房、乏燃料水池、机械设备区、安全壳贯穿区和主蒸汽、给水阀门隔间.
4)汽轮机厂房:安装主汽轮机、发电机相关流体和电气系统。
5)放射性废物厂房:包括各类废料在处理前的隔离储存设施、移动式废物系统的处理设施和将经处理的废物贮存装入输送和处置容器的设施。
(2)核岛系统模型:
包括核反应堆、蒸汽发生器、稳压器、主循环泵以及相应的管道等组成。
核反应堆模型:它由堆芯堆内构件、压力容器和控制棒驱动机构等主要部件组成;反应堆堆芯装载有193束燃料组件,61组控制棒组件,2组启动中子源和整体可燃毒物组件及部分阻力塞组件。
蒸汽发生器模型:一回路冷却剂将反应堆热能传给二回路工质使其变为蒸汽的热交换设备。立式倒U形管自然循环结构形式,由一次侧下封头、管板、U形管束和二次侧筒体、汽水分离装置等组成。
稳压器模型: 稳压器是补偿一回路冷却水温度变化引起回路水容积的变化和调节系统工作压力,防止一回路系统压力变化引起设备损坏或堆内冷却剂沸腾。结构呈钟罩形筒体。顶部有安全阀,卸压阀喷雾装置,底部电加热元件。
主冷却剂泵模型: 冷却剂主泵将反应堆热能输送到蒸汽发生器,二回路系统正常工作,是系统中重要转动设备;泵由泵壳、叶轮、转轴部件、密封部件,飞轮和电机等组成。
核II级泵模型: 高压安注泵,余热排出泵,安全壳喷淋泵和上充泵是核岛辅助系统中重要安全设备。
主冷却剂管道模型:主冷却剂管道包括连接压力容器,蒸汽发生器、主泵的热端和冷端管段。为双回路布置,每个回路有热段将冷却剂运到蒸发器和冷段将冷却剂运回压力容器,完成一个循环。
(3)常规岛主、辅设备系统模型,如图所示4;
包括核汽轮机、汽水分离再热器、冷凝器、除氧器、发电机以及相应的管道等组成。
1)核汽轮机模型;双组复合四缸六排汽机组。四个汽缸与发电机,励磁机用单轴串联,布置在同一平台上,两侧设置两台汽水分离再热器;具有一个高压缸和三个相同的低压缸。每个低压缸配备一台冷凝器。每台低压缸有两个排汽口,往冷器器排汽。
2)汽水分离再热器模型:将高压缸排出的蒸汽进行分离除湿,并进行加热升温,使其成为微过热蒸汽,然后再进入低压缸继续作功。汽水分离再热器采用卧式筒体结构,分离和两级再热。由分配管、导流孔板、波纹板、低压再热器、高压再热器及安全阀等组成。
3)冷凝器模型:汽轮机低压缸配备冷凝器,横向布置,双通道,双流程,单背压;
4)除氧器模型:采用淋水盘式除氧器,设有多层平行的淋水盘,盘上钻有许多小孔,待除氧的水由淋水盘上部引入,由喷雾器粉碎成雾滴,在降落过程中被流动蒸汽加热进行初级除氧,再通过小孔,分散成细流,以此通过各层淋水盘流至给水箱。
5)发电机模型:发电机采用国际成熟大型水,氢冷却发电机,定子线圈采用水冷,转子线圈采用氢冷
地下水污染数学模型是描述地下水中污染物随时间和空间迁移转化规律的数学方程。污染模型的建立可以给出排入地下水中污染物的数量与地下水水质之间的定量关系,从而为水质预测及影响分析提供理论依据,便于进行地下水污染修复。 目前,已提出各种各样的地下水污染模型,按不同的分类方法可划分为以下几类: 按时间特性划分为动态模型和静态模型。描述地下水中水质组分的浓度随时间变化的水质模型称为动态模型;描述地下水中污染组分的浓度不随时间变化的水质模型称为静态模型。 按水质模型的空间维数划分为一维、二维、三维水质模型。描述水质组分的迁移变化在一个方向上是主要的,另外两个方向上是均匀分布的,这种水质模型称为一维水质模型;描述水质组分的迁移变化在两个方向上是主要的,在另外一个方向上是均匀分布的,这种水质模型称为二维水质模型;描述水质组分的迁移变化在三个方向进行,该水质模型称为三维水质模型。
泸州门座起重机模型_生物质气化炉新能源模型查询结果显示在查询结果窗中,查询结果只会是在图层列表中选中的目标类型的目标。3.4. 查看河流水质状况在图层列表中使河流水质状况可见(参见:使某种目标在地图上可见)。系统将以不同的颜色显示出河流的水质等级:显示河流水质等级的图例含义如下:3.5. 查看河流污染扩散分析结果在图层列表中使沙河危险品污染源可见(参见:使某种目标在地图上可见),系统将在地图上显示沙河流域的所有排放危险品污染源的相关企业。选择查询工具(参见:在地图上查询某种目标)查询地图上的危险品污染源,查询到的结果就显示在查询窗口中,如下图所示。鼠标选择查询窗口中的任意一条数据,在屏幕的下方输出窗口就可以查看该企业排放的危险品污染物。打开主菜单上的 [查询分析] —〉[污染物浓度计算],在信息窗口中输入污染物浓度计算需要的参数。计算后系统自动切换到河流零维水质模型计算界面,并把污染物浓度传递过去。再输入河流零维水质模型计算需要的其他参数,计算后系统自动切换到河流一维水质模型计算界面。
按描述水质组分的多少划分为单一组分和多组分的水质模型。地下水中某一组分的迁移转化与其他组分没有关系,描述这种组分迁移转化的水质模型称为单一组分水质模型;地下水中一组分的迁移转化与另一组分(或几个组分)的迁移转化是相互联系、相互影响的,描述这种情况的水质模型称为多组分水质模型。 按水质组分类型划分为耗氧有机物、无机盐、悬浮物、放射性物质等的单一组分的水质模型,难降解有机物水质模型,重金属迁移转化水质模型等。 按污染物的性质划分为惰性污染物迁移扩散模型和非惰性污染物迁移扩散模型。污染物进入地下水中后,随着介质的运动不断地变换所处的空间位置,还由于扩散作用不断向周围扩散而降低其初始浓度,但不会因此而改变总量,不发生衰减,这种污染物称为惰性污染物(如重金属、很多高分子有机化合物等)。污染物进入地下水后,除了随着介质流动而改变位置、并不断扩散而降低浓度外,还因自身的衰减而加速浓度的下降,这种污染物称为非惰性污染物。 按所建模型的数学方法划分为确定性数学模型、随机数学模型、灰色系统模型、黑箱模型等。 按所建模型方程的类型划分为线性模型和非线性模型。 按模型中参数的类型划分为集中参数模型和分布参数模型等。