常德武陵区温度变送器校准-第三方检测校准机构
-
¥188.00
我公司在一次现场检查中发现一机械加工企业(配变容量100kVA,力调用户),总表为三只单相1.5(6)代有功,其中的C相表读数与前次抄表时少了两个字。加上该用户平均用电量在6000kW·h左右,检查人员怀疑有窃电可能,当切除用电负荷时,发现C相电能表在反转,A相正转,现场人员立即向局里汇报,我们组织人员到现场进一步检查。
经检查发现,当切除负荷后,三只电能表其中A相正转、B相不转、C相反转。运行现场发现该用户电容柜自动补偿器损坏后,电容补偿一直为手动运行,同时发现电容器补偿三相电流指示不平衡,其中B相电流为零,当场切除电容,再看三只电能表均不走。再试仍是原来情况,后集中对B相电容补偿回路进行检查,发现B相PTO熔丝不通,说明断开,重新更换后再投运,指示电流表正常,电能表三只均停走。
情况分析:为什么电容器缺相运行会引起电能表反转?是否会影响正常计量?作如下分析:
现场故障时用电负荷为零,电容器接线方式为星形,电容器为纯容性负载(有功损耗很小忽略不计),电源相序为正相序,见图1系统接线图和向量图。
当系统正常运行时(用电负荷为零),因为各相电路中容性电流的相位分别对应的电压90°,各相电能表的功率为P=UIcos90°=0,所以三只单相电能表都不转。
当电容器B相熔丝熔断即退出运行时,A、C相电容器形成串联后接在电源Va和Vc之间,这时,电路中的电流幅值和相位都发生了变化,见图2所示。
即A相电流Ia电压Vac角度为90°,因为VaVac 30°,所以A相电流Ia电压Va角度为60°;
C相电流Ic电压Vca角度为90°,因为Vc滞后Vca 30°,所以C相电流Ic的相位电压Vc为120°;
此时A相电流与C相电流大小相等,方向相反。
因为电能表的电压回路正常,所以各相电能表运行状态下的功率分别为:
Pa=VaIacos(90°-30°)=VIcos60°=0.5VI>0,则A相电能表正转。B相电流为零,B相电表不转。
Pc=VcIccos(90°+30°)=VIcos120°=-0.5VI<0,则C相电能表反转。
结论:凡是有电容器补偿的用户,因电容器缺相运行引起的单相电能表(指代总表的三只单相表)在无用电负荷情况下的缓慢正转或反转属正常情况,且不影响正确的计量,即三只单相表记录的总电量不受影响,表面上看一只表正转,另一只表反转,其增加与减少的电量是相等的,进一步讲,对有无功电容器补偿装置的用户或变压器台区,电容器若发生缺陷运行所产生的异常对正确计量没有任何影响。
值得思考与提示的问题是,我县每台农改配变的配电箱都配有(20~40)kVAR的电容器补偿(根据变压器容量而配)。像上述的情况时有发生。在工作中遇有不少农电人员请示这类问题,要求安装电子式电能表或1.5(6)A双向计数式机械表,这都是不正确的。因为目前生产的电子式电能表,基本计度器采用步进电机驱动计度器计电量,当电流是反向时则计度器仍为正计量。机械式1.5(6)A双向计数式电能表同样是这样的道理,也就是说用这样的表作为计费表,当发生上述电容器缺相运行时,其中反转的一只表此时计数为正电量,导致多计用户电费,这种计量方式切不可用在有无功补偿装置的用户及变压器台区。
通过该异常情况分析,也充分显示我们用电检查(营销)人员的业务知识要进一步提高,同时要组织好社会电工和农村电工的培训,不断提高他们的业务技术素质和依法经营的意识,确保电力系统正常稳定的运行。
材料试验机作为机械性能测定的主要装备之一,在机械加工行业得到了广泛的应用。本文就企业中常用的液压材料试验机常见故障及排除方法逐一进行阐述。
1.试验机在加荷过程中度盘指针抖动,其可能原因有
(1)试验机与其附近的其他机器(如金属切削机床,大功率电机等)发生机械共振,引起指针抖动;
应采取的措施:消除共振源。
(2)安装地基不牢固或地脚螺钉松动(一般为地脚螺钉松动);
应采取的措施:紧固地脚螺钉。
(3)液压系统中有空气,使出油不均导致液压系统产生震动,从而引起指针抖动。这有两个可能因素:一是油泵中进了空气;二是主体油缸接管带进了空气;
应采取的措施:如果是油泵进了空气,应松开油泵排气螺钉,启动电源,使泵内空气排尽(油中无气泡),然后拧紧油泵排气螺钉。如果是主体油缸接管带进空气,应启动电源,关闭回油阀,打开进油阀,让主体油缸中含有空气的油流回油箱。如此反复数次,直至空气排尽。
(4)油液粘度低,活塞周围有较多溢油,高压回油管漏油;
应采取的措施:更换符合要求的新油。
(5)送油阀内有铁末、油渣等异物,使送油阀内顶杆不能在阀内的分流槽内自由移动,使液压系统产生震动;
应采取的措施:清洗送油阀,排出异物。
(6)送油阀内起稳压作用的弹簧刚度不适(一般太软),引起液压系统震动;
应采取的措施:更换合适的弹簧。
(7)油泵工作不正常(个别活塞不工作),使出油压力不匀产生液压系统的震动。
应采取的措施:清洗检查油泵内部零件结构,进行相应维修或更换新油泵。
2.载荷保持不住,其可能原因有
(1)液压油粘度过低;
(2)液压系统内有空气存在;
(3)液压系统漏油或回油阀关闭不严;
(4)送油阀内的稳压弹簧刚度过小;
(5)送油阀内有杂质异物。
应采取的措施:排出液压系统中的空气,排除漏油因素,如活塞四周有大量液压油溢出,则应检查溢流管导通情况,其次检查液压油粘度,视情况处理。如经处理或换油后不漏油而载荷仍保持不住,则应清洗送油阀并增加阀内稳压弹簧刚度。
3.加不上载荷,或加不到大载荷,其可能原因有
(1)油泵皮带松动,有打滑现象;
(2)油泵不能正常工作;
(3)油箱中的储油量不足;
(4)液压油粘度过低;
(5)液压系统有漏油情况发生;
(6)送油阀内稳压弹簧刚度不够;
(7)送油阀内的节流针孔有堵塞现象。
应采取的措施:检查高压油路系统是否漏油,油箱内储油量是否足够,油泵皮带是否松动,其次检查回油管的回油量是否在油压上升时变大,(正常情况下应不变或变小),然后再检查送油阀、油泵等是否正常,根据情况采取相应对策。
4.加荷途中,指针突然向回倒或抖动,其可能原因有
(1)液压系统有严重漏油(升压到一定程度产生漏油),或稳压弹簧刚度过低;
(2)节流针孔有堵塞现象。
应采取的措施:应检查液压系统,排除漏油因素,其次清洗节流针孔,检查稳压弹簧刚度是否合适,否则予以更换。
5.摆锤回位不良,其可能原因有
(1)缓冲阀问题:a.缓冲阀调节不当;b.缓冲阀节流针磨损;c.缓冲阀内的钢球与进油口接触不良,有空隙;d.缓冲阀出油孔堵塞;
(2)油的粘度过大或过小(摆锤回落速度太慢或太快);
(3)液压油太脏。
应采取的措施:检查缓冲器调节位置是否恰当,油液是否清洁,粘度是否符合要求,其次检查缓冲阀是否清洁完好,节流针是否磨损,视情况予以调整或更换。
6.摆杆不能调至垂直标志位置,其可能原因有
(1)摆锤编号与试验机不一致;
应采取的措施:检查并更换与之相一致的摆锤。
(2)测力机构倾斜;
应采取的措施:调正测力机构。
(3)摆杆弯曲变形。
应采取的措施:校直摆杆。
7.调整指针零点时其灵敏度差或在使用过程中指针零点经常发生变动,其可能原因有
(1)试验机存在不稳定的摩擦,如指针、齿杆、摆杆等处轴承存在摩擦,工作活塞擦靠,测力活塞导向轴承不灵活等非正常摩擦;
应采取的措施:进行清洗并加以调整。
(2)测力活塞不转动,如测力活塞传动机构被卡住,蜗轮、蜗杆间隙调整不当;
应采取的措施:进行清洗并加以调整,如蜗轮、蜗杆损坏应予更换。
(3)缓冲阀回油不良或存在摩擦;
应采取的措施:进行清洗或调整。
8.摆锤不能升到极限位置,其可能原因有
(1)平衡锤触碰机体;
应采取的措施:适当调整平衡锤位置。
(2)推杆位置调整不当;
应采取的措施:适当调整推杆位置。
(3)连杆上的挡板位置调整不当;
应采取的措施:将挡板适当调高,使指针转动一周稍过2-3小格才触动安全开关。
(4)摆锤主轴方铁下横隔板上的控制螺丝调整不当或异物。
应采取的措施:清除异物,适当降低控制螺丝,使挡板先触动安全开关后方铁才与控制螺丝接触。
9.摆锤已升至极限位置而指针未到达满刻度,其可能原因有
(1)指针与度盘之间有擦靠或轴承锈蚀;
(2)指针轴齿轮上的线轮绕线过短或绕线位置不当。
应采取的措施:视情况进行调整。
10.工作活塞升起后,回油时不能自由降下,其可能原因有
(1)活塞与缸体的配合部分有锈蚀、异物、机械损伤或润滑不良;
(2)活塞上升位置超过极限而倾斜。
应采取的措施:下夹头升起,使之顶住上夹头,清洗油缸活塞,除去锈蚀、异物。若检查发现活塞表面有损伤,应用沙纸和油石磨去毛刺;若是上升位置超过极限而倾斜,应再次升压使活塞上升,扶正位置后缓慢放油,使活塞慢慢降下。
11.工作活塞空载上升时,指针指示出一定的载荷,空载下降时指针向负方向走几格,其可能原因有
(1)测力部分的重量平衡未调整好;
应采取的措施:空载上升一段距离后,使试验机进入工作状态,用平衡锤把摆锤调到铅垂位置,指针对零。
(2)主体部分立柱上的滑轮摩擦太大,或工作活塞存在摩擦。
应采取的措施:调好滑轮与立柱的相对位置,其间隙应均为(0.1~0.5)mm。若工作活塞有摩擦,应将活塞升至极限位置,进行清洗或调修。
12.卸荷完毕,摆锤已回到铅锤位置,而指针仍停在中途位置,其可能原因有
(1)齿杆与齿轮啮合太紧或其间有异物;
(2)齿杆弯曲或齿杆、齿轮、齿尖受损;
(3)指针擦盘或轴承锈蚀;
(4)测力活塞尖角损伤。
应采取的措施:检查齿杆、齿轮是否灵活,齿是否受损,齿杆是否弯曲,应视情况进行清洗或调修。
13.从动指针不能停在所加负荷位置,其可能原因有
(1)从动指针太松;
(2)从动指针与主动指针重合太紧;
(3)从动指针两端的重量不平衡。
应采取的措施:检查从动指针是否完好,其次抬起摆锤,使主动指针带动从动指针转动,看其是否能停在不同位置,如果不能,则应检查指针轴或调整从动指针下面的弹簧,使之能停留在度盘的任意位置。
14.下夹头升降不灵活,其可能原因有
(1)丝杆、螺母内有异物或机械损伤;
(2)蜗轮、蜗杆松动;
(3)丝杆与机台上的通孔摩擦;
(4)电机传动皮带松动。
应采取的措施:视情况分别予以清洗或调修。
15.夹具不同心,其可能原因有
(1)异向滑轮位置调整不当;
应采取的措施:调整滑轮,使滑轮与立柱间间隙均为(0.1~0.5)mm左右。
(2)夹具本身同心度超差;
应采取的措施:进行修理,使之达到要求。
(3)主体部分安装不水平。
应采取的措施:进行水平调整。
16.电器设备故障
(1)电机发出异响,其可能原因有:a.三相电路有一相缺相;b.传动机构故障引起电机负荷加重;
(2)电机发烫,其可能原因有:a.电机绕组存在短路;b.电机超载;c.电机受潮;
(3)突然断电,其可能原因有:a.电器系统存在短路:b.电器开关接触不良;
(4)电器控制开关失灵,其可能原因有:a.开关位置调整不当:b.控制开关内部故障(接触不良或活动部件被卡);
(5)机体导电,其可能原因有:a.地线未接或接触不良:b.电器受潮;c.相线导线接头与机体接触。
应采取的措施:视情况采取相应措施予以排除。
一般来说,由于仪表引起的电力设备障碍是很少的,但我们在工作中恰巧就碰到了一回。
当时我们电测班在变电所进行指示仪表周期轮换,结束后经检查,二次回路接线全部正确,仪表指示正常。但是在回来的路上我们接到变电所值班员的紧急通知,反映由于我们的工作引起母线空气开关跳闸。立即赶回变电所,现场经万用表核对接线,二次回路正确无误,但电压熔丝一旋上,母线空气开关就跳闸,怀疑是仪表内部电压短路,便试着逐个更换仪表,当更换了该线路的无功表,电压熔丝旋上后,一切正常,从而初步确定障碍由无功表内部原因引起,将“肇事者”带回。再对该表进一步检查、重新检定,该表各项指标均符合JJG124-1993《电流表、电压表、功率表及电阻表》检定规程的规定,又用万用表测量电压、电流回路之间电阻,发现并不短路。逐一核对规程上的检定项目,当看到修理后的仪表还要做绝缘电阻测试检查,忽然想到,虽然此表为新表,但仍怀疑是不是绝缘电阻有问题。在用摇表对其进行绝缘电阻检查时,果然测出该表的A相电流回路与B相电压回路存在短路现象。经过仔细观察和测试,发现该表的定圈(接A相电流回路)与铁芯(硅钢片)的绝缘电阻很小,即电流回路与铁芯导通;而B相电压的线头恰好与铁芯有一点接触,从而引起A相电流与B相电压导通,即电流回路与电压回路之间短路。当变电所电压熔丝合上后,就引起二次电压短路接地,发生母线空气开关跳闸的现象。因以前从未发生过这种情况,我们又将此表与其他功率表对比,发现此表为16D20-Var型,1997年出厂,为新购的一批表,比较这批表与其他批次的表,其他表为16D3-Var型,做工较精细,如图1。5为黑色硬塑料,位置在铁芯上方,离铁芯还有一段距离,且铁芯外面还有一圈铁套,则电压线头不可能与铁芯接触,即使定圈(电流回路)与铁芯绝缘不好,也不会发生电压、电流回路之间短路的现象。但这批16D20-Var型的表做工粗糙;5为一白色薄塑料片,位置在铁芯下方一点,紧靠着铁芯,铁芯外也没有铁套,铁芯裸露着,只要电压端线头稍微长一点,就很容易与铁芯相碰。造成这种情况,是生产厂家为节省材料所致,我们打电话到电表厂,反映了这个事实,厂家也承认了这个情况,并表示以后完全按规定组织生产。
至此得出结论:引起母线空气开关跳闸的原因系无功表的内部质量造成。为避免再次发生类似情况,我们采取了相应的预防措施:仪表检定时增加绝缘电阻检查这一环节,即使表的绝缘性能不过关,我们也能在检定时发现,不将其安装到变电所,一切问题迎刃而解。
绝缘电阻测量仪主要是用来测量变压器、电机、电缆及其它电器设备或绝缘材料的绝缘电阻。它具有携带方便,使用简单等优点,被广泛使用。下面就其常见的两种故障现象作一简单分析。
1.电压超差且不稳
端钮电压超出额定电压规定的范围并且不稳定,是绝缘电阻测量仪使用一段时间后常见的故障。
(1)如果误差较小,可以判定电路无故障,只是由于调速系统的调速轮与触头接触面上有油污,使摩擦系数发生了变化,或调速弹簧拉力变化,使磁铁组合磁能受到损失,从而使端钮电压发生了变化。此时,只需用酒精清洁一下调速轮或适当调整一下弹簧拉力,即可使端钮电压达到规定的范围。
(2)如果端钮电压低于规定值较多且摇动发电机感觉很费力,则说明发电机的输出电路有短路。
A.断开整流电路后摇动手柄,感觉仍很沉,电压值也较低,说明发电机的固定线圈定子发生了层间、匝间短路;
B.断开整流电路摇起来恢复正常,说明整流电路发生了故障。因为,整流二极管及硅堆反向电流变大或反向击穿短路,或倍压电容器、滤波电容器击穿,印刷电路板绝缘下降等,都可能引起端钮电压变低,不稳。应更换掉损坏的器件。
2.开路时不到∞,短路时不到0
此故障一般发生在测量机构。
(1)开路时不到∞,短路时0位超出。是电压线圈短路造成的。由于电压线圈短路后与补偿线圈的电气力矩失去了平衡,同时,短路的电压线圈与电流线圈的电气力矩也失去了平衡。从而造成了开路不到∞,短路0位超出的故障情况。
(2)开路时∞超出,短路时不到0。前者是补偿线圈短路造成的,后者多由于电流线圈短路引起。
(3)开路时到∞,短路时指针不动。说明电流线圈断路或电流回路断路。
(4)开路,短路时指针均不动,则说明电压回路及电流回路均有断路情况。因为电流线圈和电压线圈的材料均为特细的漆包铜线,经长期使用后,难免发生锈蚀造成断路。
以上两种故障,是绝缘电阻测量仪的常见故障,查明了原因,就可以有针对性地进行调修了。
由于巨化地处江南沿海地区,气候较为潮湿,且生产环境较为恶劣,许多称重传感器常因腐蚀性气体和潮湿等外界因素的影响而受损。我们经过多年的工作实践摸索出一些判断传感器是否损坏和在工作实践中如何防腐防潮的实用方法,现简要介绍如下:
一、受损原因初探
本公司各类大中型电子衡器一般都使用悬臂剪切梁电阻应变式称重传感器,该类型传感器内部由应变片组成的惠斯登电桥及补偿电阻构成。某些厂矿为节约生产成本,选用了价格低廉但密封性能较差的胶质密封式或橡胶密封式的称重传感器。由于其密封材质为胶质和橡胶,本身存在自然老化现象,再加上化工生产中许多称重传感器需在环境条件较为恶劣的腐蚀性场合下使用,加快了密封介质的龟裂老化,使得外界的腐蚀性介质和潮湿水气等得以通过损坏的隔离层侵入传感器内部,使得电阻元件自身阻值发生变化,导致测量结果失真。
二、判断方法
称重传感器因受腐蚀和受潮导致内部电阻元件受损时,会严重影响称量准确性。传感器是否受损可采用下述方法进行初步判断:
1.外观检查:仔细查看被检传感器的外观,如发现外观出现破损龟裂等现象则表明该传感器可能受损。
2.线路粗查:传感器的供电电源线、信号线和屏蔽线为同轴电缆,可用万用表对其进行对测(即电源线—信号线、电源线—屏蔽线、信号线—屏蔽线),若出现短路、断线或绝缘性能下降等现象则表明该传感器可能受损。
3.测量内部电阻:在没有检测设备时,可用位数字万用表的欧姆档对传感器的输入阻抗ZI和输出阻抗ZO进行测量,并将测得值与厂商提供的产品合格证书上的标称值进行比对,当测得值超过允许范围时,则表明该传感器可能受损(注:所用万用表自身数值应准确,好经过计量检定/校准后再用)。
4.空载检测:
(1)拆下所有传感器,逐个接入测量电路,在无外加载荷(空载)状态下,性能良好的传感器会快速回零且显示值较为稳定,而受损后的传感器则可能出现显示数值跳变,无法回零等现象。经手动清零后上述现象仍会重复出现。
(2)接好所有的传感器,仍旧进行空载测量,测量时先拆下一只传感器并观察显示数值是否能稳定,然后将该传感器仍旧接回后再拆下另一只传感器并进行测量,按顺序对所有传感器进行测量,若发现某只传感器被拆除后显示数值恢复正常则表明该传感器可能受损。
5.载荷校验:在使用了上述方法都无法判断出受损传感器时,可用标准计量标定法对所有传感器进行载荷校验。方法是用自重为1t的标准砝码对传感器逐一进行加载试验,未受损的传感器显示的测量值应为逐渐加载后标准砝码的叠加值,而受损后的传感器所显示的测得值则会与逐渐加载后的标准砝码叠加值产生较大的偏差(一般加载量应大于该传感器额定载荷的20%)。
三、预防和处理
针对称重传感器常在强腐蚀性潮湿环境下使用的特点,我们在安装和使用时采取了如下措施并取得了良好的效果:
1.在一般的生产环境下使用时可选用密封性能良好且不易老化的硅胶密封式称重传感器,在强腐蚀性或特别潮湿环境下使用时则选用密封性能的焊接密封式称重传感器。
2.在安装时尽量做到不使用地下管道,安装条件许可时可适当抬高承重平台的基座。若铺设地下穿线管道(如汽车衡、轨道衡等),则应选用耐压、防腐、阻燃、耐老化的PVDC塑胶管材,并设法将进、出口向上弯曲以阻止雨水等灌入管材内。
3.在安装传感器前用黄油涂抹整只传感器,当所有的传感器安装完毕后,还需对传感器与安装基座接合处、线路接口、接线盒(加法器)缝、PVDC穿线管道接口、进出口等易受腐蚀性气体和雨水潮气侵蚀及老鼠昆虫等侵入之处用黄油再次密封。
4.平时注意保持在用传感器的干燥清洁,发现积水及时排除,不用水冲洗承重平台以免祸及称重传感器。
液相色谱仪利用试样中各组分在色谱柱中固定相和流动相间分配或吸附特性的差异,由流动相将试样带入色谱柱中进行分离,经检测器进行检测,根据组分的保留时间和响应值(峰高或峰面积)进行定性和定量分析。
液相色谱仪在使用过程中常有定量结果不准确,准确度降低情况出现,如何解决液相色谱仪在使用过程中准确度降低的问题,须从以下原因入手寻找解决的方法。
一、峰高、峰面积的积分值不准确
解决的方法是设下列参数:样品量、换算比例、内标物量、保留时间。
经适当变化后,重新进标样提高试验准确度。
二、样品预处理时样品降解或样品不纯
解决方法:用标准样比较,验证样品完整性,检查样品处理过程,换新样。
三、样品蒸发
解决方法:在适当的温度下密封保存样品。
四、样品前处理不当
解决方法:检查样品制备过程中浓度、溶剂过滤等。
五、内标物配置不当
解决方法:验证内标物配制、混合过程(称量和适当稀释),配制新内标物。
六、进样问题(只对外标法而言)
解决方法:1.如果使用全部定量环的手动进样器,在进样前需在“取样”(load)状态下清洗三次;2.如果使用部分定量环的手动进样器,进样量需少于定量环体积的50%;3.如果使用注射器的手动进样器,须确保进样操作重复;4.如果使用自动进样器可以确保正确的进样体积,须注射器不含空气,样品瓶有足够的样品,系统不泄漏;5.如果手动进样器、自动进样器都使用,应确保流路的平衡。
综上所述,液相色谱仪准确度降低由多种原因造成,操作者应综合分析、判断,并通过各种可能的尝试,从而快速排除故障,使仪器恢复正常。