莆田均粒树脂联系方式
-
¥10.00
树脂沉降速度是关于树脂粒径和树脂密度的函数,在阴、阳离子交换树脂固有密度差异下,树脂粒径越均一,阴、阳离子交换树脂才能更好的按照差异化速度同步下沉,快速的实现阴、阳离子交换树脂间的分床,为后期树脂的充分再生提供便利条件。
当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氢化纳溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”。阳离子交换树脂的再生方式离子交换剂失效后通过再生来恢复离子交换能力,常用再生方式有顺流再生与逆流再生。
阳离子交换树脂,软化树脂,树脂顺流再生时原水与再生液流过交换剂层的方向相同。因此在再生液流过交换剂层时接触到的是交换剂层上部完全失效的已包含上部交换剂层被置换出来的离子,影响交换剂层下部的再主度(再生度指离子交换剂层中已再生离子量与全部交换容量的比值),造成处理水质降低、再生剂耗量增加。顺流再生离子交换设备简单,工作可靠,但受原水水质组分影响大,再生效果换容量不能得到充分利用。而再生后,下部再生度低,为了提高出水质量和工作交换容量,增加再生剂的耗量。
再生用的药品质量对阳离子交换树脂的再生效果有很大的影响,阴阳离子交换树脂再生采用高纯碱有利于对阴树脂的再生。根据离子交换平衡原理,对工业碱与高纯碱质量的理论分析得出,采用高纯碱再生时,其阴床出水Cl一含量仅为工业碱再生时的1/46。实践证明,采用高纯碱再生时,树脂的再生度提高了约77%,树脂的工作交换容量提高了约13%,同时设备的周期制水量提高了约16 %。表3-24为弱碱阴树脂工作交换容量与进水质、碱液质量的关系。
一般均在常温下再生。阴树脂再生时,所用再生液的温度和再生时间,对再生程度的影响要比阳树脂大。当原水中Si02 <A<10%,加热碱液不经济Si02 <A比值升高时,加热碱液除硅效果明显提高。阴阳离子交换树脂提高再生液的温度可以改善对硅酸的再生效果和缩短再生时间,但温度太高易使树脂的交换基团分解,影响其交换容量的使用寿命。实践证明,再生和清洗的佳温度对于工型强碱性阴树脂为35~50℃ II型为(35士3)℃在动态阴离子交换过程中,HSiO-3在树脂层中的分布情况与其他阴离子有些不同。HSiO-3虽然主要是被下层的阴树脂吸附着,但就是在上层的树脂中也有少量吸附。同理,再生时,树脂层中硅酸氢根被置换出来的速度也就比较缓慢。碱液不加热要增加再生剂的耗量。
再生液流速涉及再生液和树脂的接触时间,直接影响再生效果。在离子交换器中,再生液的流速一般控制在4 ~8m/h。如果再生液和树脂的接触时间不够,可调整再生液的浓度和流速,必要时修改设备直径。强型阳离子交换树脂的再生浓度一般采用2%-5%,弱型阳离子交换树脂容易再生,对再生效率影响不大,再生浓度一般采用0.5%一5%。强碱性阴阳离子交换树脂的再生流速=2~4,再生时间与运行时进水中的Si02%有关。
离子交换树脂的全名称由分类名称、骨架(或基团)名称、基本名称组成。孔隙结构分凝胶型和大孔型两种,凡具有物理孔结构的称大孔型树脂,在全名称前加“大孔”。分类属酸性的应在名称前加“阳”,分类属碱性的,在名称前加“阴”。如:大孔强酸性苯乙烯系阳离子交换树脂。
树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。
离子交换树脂通常制成珠状的小颗粒,它的尺寸也很重要。树脂颗粒较细者,反应速度较大,但细颗粒对液体通过的阻力较大,需要较高的工作压力;特别是浓糖液粘度高,这种影响更显著。因此,树脂颗粒的大小应选择适当。如果树脂粒径在0.2mm(约为70目)以下,会明显增大流体通过的阻力,降低流量和生产能力。