陵城区佛碳漆岗亭电话
-
面议
车牌辨认系统的顺应性急需增强
目前我国的车牌辨认产品都请求所辨认的车牌大小固定,而对过大和过小的车牌普通都不能辨认。这样就形成对视频触发的状况下局部车牌无法被辨认的问题。此外,在有些现场环境中,由于受外界条件的影响,无法将相机架设在位置,会形成图片中车牌不同水平的偏移。
车牌识别感光部件对外部环境的处置
环境是影响车牌辨认的主要要素,在采集车辆图像时,由于环境光线变化猛烈,白昼光较强、夜间较弱,面光与背光不同,上午和下午的光照方向也不一样,抓拍图像时受环境光线影响较大,车速过高、采集设备的动态范围等都使成像质量难以得到有效。当辨认算法以为车牌到达了成像位置时系统触发系统开端拍摄,这对触发设备的牢靠性和响应速度都有较高的请求。所以要处理环境形成辨认率低下的问题,还要靠摄像机的感光部件对外部环境的处置。
对图像预处置
车牌识别中车牌定位之前普通要对图像做预处置,然后再停止车牌的定位、分割、辨认等局部。由于得到的车牌图像可能含有较多噪声,或图像比照度不强、车牌被局部遮挡、车牌处呈现污点、变脏、含糊褪色、有其它字符区域干扰、以及呈现因运动产生的图像含糊失真等状况,所以定位算法完成起来有较多艰难。关于字符分割,则可能存在光照不均、污迹严重、车牌倾斜、比照度小、牌照褪色、牌照字符粘连等不利要素,这样就需求研发与之顺应的算法。如算法能顺应各种复杂环境和有噪声、车牌遮挡、车牌倾斜等情况的话,那就能够大大进步车牌辨认的概率。
车牌校正
由于受拍摄角度、镜头等因素的影响,图像中的车牌存在水平倾斜、垂直倾斜或梯形畸变等变形,这给后续的识别处理带来了困难。如果在定位到车牌后*行车牌校正处理,这样做有利于去除车牌边框等噪声,更有利于字符识别。目前常用校正方法有:Hough变换法,通过检测车牌上下、左右边框直线来计算倾斜角度;旋转投影法,通过按不同角度将图像在水平轴上进行垂直投影,其投影值为0的点数之和时的角度即为垂直倾斜角度,水平角度的计算方法与其相似;主成分分析法,根据车牌背景与字符交界处的颜色具有固定搭配这一特征、求出颜色对特征点的主成分方向即为车牌的水平倾斜角度;方差小法,根据字符在垂直方向投影点的坐标方差小导出垂直倾斜角的闭合表达式,从而确定垂直倾斜角度;透视变换,利用检测到的车牌的四个顶点经过相关矩阵变换后实现车牌的畸变校正。
字符分割
定位出车牌区域后,由于并不知道车牌中总共有几个字符、字符间的位置关系、每个字符的宽高等信息,所以,为了车牌类型匹配和字符识别正确,字符分割是的一步。字符分割的主要思路是,基于车牌的二值化结果或边缘提取结果,利用字符的结构特征、字符间的相似性、字符间间隔等信息,一方面把单个字符分别提取出来,也包括粘连和断裂字符等特殊情况的处理;另一方面把宽、高相似的字符归为一类从而去除车牌边框以及一些小的噪声。一般采用的算法有:连通域分析、投影分析,字符聚类和模板匹配等。污损车牌和光照不均造成的模糊车牌仍是字符分割算法所面对的挑战,有待更好的算法出现并解决以上问题。
软件识别:显而易见词义能理解出来是通过软件对车牌号码进行的,通过在电脑上安装一个配套的车牌识别软件,对抓拍的图片进行识别处理。其工作方式是通过摄像机连续抓拍多张照片,选择其中较为清晰的一张,然后通过电脑软件进行字符处理,实现号牌识别的。
因为每次识别需要抓拍多张图片,因此软识别的速度较慢。而且该系统对所抓拍的图片要求也是*的,极为清晰才能达到想要的效果。该系统对现场环境以及调试质量要求*,在诸多环境不乐观的场合都不适用,设备的摆放颇为重要。