江西活性炭回收价格
-
¥2000.00
用于超级电容器电极
超级电容器主要由电极活性材料、电解液、集流体和隔膜等部分组成,其中电极材料直接决定着电容器性能的高低。活性炭具有比表面积大、孔隙发达及容易制备等优点,成为了超级电容器早应用的碳质电极材料。可通过对传统活性炭的改性,制备新型及的活性炭电极材料。以聚偏二氯乙烯为前驱体,只通过炭化处理而无需其它后处理制备出比表面积1200m2·g-1、孔容0.48cm3·g-1的多孔炭,其高比电容为262F·g-1,电极密度在0.8g·cm-3左右,体积比电容可达214F·cm-3,是一种有发展前途的超级电容器电极材料。另有研究将废弃茶叶炭化后再用KOH活化,制备了具有无定型特征的活性炭,其具有比表面积介于2245~2184m2·g-1的多孔结构,用其作为超级电容器电极,以KOH水溶液作为电解液,比电容高达330F·g-1,充电放电2000次后电容略有下降,为初始电容的92%,表现出良好的循环性能。若使用莲花花粉作为碳源和自模板,CO2为活化剂制备活性炭微粒,制备的活性炭具有三维纳米网格骨架构成的多孔空心结构,将这种特殊的活性炭用作超级电容器电极,其比电容高达 244F·g-1,充电放电10000次后电容无衰减
其他应用
在活性炭各种应用中,国家标准 《活性炭分类和命名》 的附录 A 中, 提供了不同类型活性炭主要用途对照表,该对照表,对指导不同用户选取不同类型的活性炭及其应用提供了方便,详见下表
生物再生法
利用微生物的新陈代谢,将吸附在活性炭上的污染物质氧化降解的方法称作生物再生法。活性炭的孔径一般只有几纳米,微生物很难进入其孔隙内部,通常微生物细胞酶可以流至细胞胞外,通过活性炭对酶的吸附,在炭表面形成酶促中心,分解污染物,达到再生的目的。生物法的投资和运行费用相对较低,但再生时间较长,水质和温度对再生效果的影响很大。同时,微生物处理污染物的选择性很强,且一般不能将所有的有机物分解成CO2和H2O,其中间产物仍残留在微孔中,多次循环后再生效率会明显降低。