抗离析剂保水增粘剂解决混凝土流动性问题
聚羧酸系减水剂应用中的几个问题
随着混凝土技术的发展,特别是今后混凝土不但性能要高,而且向着绿色的,与环境和谐相处的可持续发展方向发展。聚羧酸系减水剂做为第三代减水剂,由于它在混凝土中发挥了的优势,本身与环境友好的特点,在国内外已得到了普遍的认可。聚羧酸系减水剂从1986年日本触媒公司将产品打入市场至今也不过短短的20年时间。国内近几年来(进入21世纪以后),也给予的关注,近这些年发展势头更加汹涌。
仅仅四五年时间,进入商品领域的生产厂家由几家发展到了几十家。不少科研单位,高等院校都拥有了自主的知识产权,产品进入了各种工程用混凝土领域。国内发达地区近年建设的一些标志性工程几乎都使用了聚羧酸系高减水剂,如上海磁悬浮列车轨道梁工程,北京奥运主场馆工程、三峡工程、首都机场扩建工程、杭州湾跨海大桥工程,大小洋山深水港工程,北京——天津城际轨道交通工程等,都取得了满意的效果,同时也积累了许多的应用技术方面的经验,也发现了不少应用技术中的新问题。铁道部为即将开工的京沪高速铁路制定的混凝土技术条件,空军的机场自密实水泥混凝土道面施工技术规范,在这些混凝土中也都考虑主要使用聚羧酸系高减水剂,为此,从06年就开展了相关的试验研究工作。
我们有机会接触到了一些聚羧酸系减水剂应用技术工作,在叹服聚羧酸系减水剂性能的同时,也发现了一些应用当中出现的各种问题,这些现象的出现对长期习惯于应用以萘系为主的减水剂的人会感到非常不合常理、或者叫做在我们的预料之外,这与我们对聚羧酸系高减水剂原来过高的期望值产生了差距。人们原本期望新的外加剂不但性能而且能解决混凝土其它组分的在的一些问题,因为聚羧酸系高减水剂的“适应性”很好。
过去已经习惯了一种好的外加剂应当能解决一切混凝土性能方面的问题,当混凝土出现了性能方面的问题,人们向外加剂供应方提出要求,而外加剂厂商也习惯了立即用各种复配手段来满足要求,很少或不能去考虑其它方面的原因,只能在复配原料及相对参量上去做文章,往往是事倍而功半。那么如何正确的使用聚羧酸系高减水剂使之发挥更好的效果,笔者注意到了以下几个方面:
1、聚羧酸系高减水剂有着不同于、二代减水剂的作用机理,实际上聚羧酸系高减水剂是由一种全新理念来研制的,它不同于第二代减水剂之处就在于:一是分子结构的多样性和可调节性,或叫做可以根据性能要求来设计分子结构。二是把减水剂的优点进一步浓缩和提高,并且在生产过程中实现了绿色。
从减水剂的作用机理上,聚羧酸系减水剂集中体现了表面活性剂分子中活性基团的多样性。不但活性基团的种类多且这些基团不仅集中在分子主链上,更活跃在嫁接于主链的侧枝上。形成极性较强的分子主链,以及带有亲水性的有一定长度和数量的侧链,分子结构呈梳型。主链很强的极性阴离子“锚固”基团用以吸附在水泥颗粒上,由众多支链支撑的向外伸展的梳齿结构为水泥粒子的进一步分散提供了充分的空间排列效应。相比于萘系减水剂的双电层电性斥力作用,空间位阻作用使分散保持的时间要长得多。如用蓝岩建材生产的BRGY-100、BRGY-200和BRGY-300与减水剂复配后在和混凝土拌合后,其流动性可以保持2个小时基本不损失。
适当的改变聚羧酸系高减水剂梳型结构,使侧链的密度与长度适当变化时,又可得到适用于预制构件用的高减水,高早强型减水剂。
由此不难看出,聚羧酸系减水剂它的特点在于,可以按要求来调整、改变分子结构,达到改变性能的目的。而不是用简单复配来改性,基于这种认识,或许对我们今后应用技术的提高有所启发。
2、聚羧酸系减水剂对胶结材料的适应性问题
工程应用中表现为,不同水泥,不用粉煤灰聚羧酸系高减水剂也有适应性问题,尤其是对粉煤灰更为“挑剔”,而磨细矿粉适应性要好一些。
水泥的适应性主要表现于:不同品种水泥,聚羧酸系高减水剂的饱和和点有很大差别,举例;盾石水泥掺1.%时(20%浓度)效果就很好,而前景水泥掺则需掺1.2%。而且在混凝土饱和点附近变化十分明显,例如前景水泥在掺1.0%到1.1%时变化均不明显,只有加到1.2%,才表现出较好的状态,一旦超过1.2%时又会很快泌水,对掺量变化很敏感,因此对不同水泥找饱和点十分重要。但是往往遇到这种情况;使用方根据资料介绍,规定只准掺1.0%,在此掺量下如果选用的水泥适应性不好,外加剂提供方则很难办,采用复配的办法往往收效甚微。
聚羧酸系高减水剂与粉煤灰也有适应性问题,灰适应性好,二、三级灰不适应情况较多,此时即使加大聚羧酸的掺量效果也不明显。究竟是粉煤灰中的哪些成分的影响,尚需进一步研究。
常常是某一种水泥或粉煤灰对外加剂适应性不好时,当你换另外一种外加剂仍不能完全满意。终可能还得更换胶凝材料,但是有些不明就理的用户往往怀疑是外加剂品质性能不好,这就有失公平了。使用蓝岩建材生产的BRGY-100、BRGY-200和BRGY-300与减水剂进行复配,可以提高减水剂对水泥和粉煤灰的适应性。