活性反硝化滤池滤料,厂污水处理,自养滤料性能
-
¥3500.00
养反硝化脱氮技术是一种无需外加有机碳源即可实现水中硝态氮深度去除的滤料术。
自养反硝化技术的核心是自主研发的耦合生物电子载体、功能菌剂和非碳源依赖型深度脱氮工艺系统。利用无机碳(CO2、HCO3-、CO32-)作为碳源,主要以无机物(S、S2-、H2、S2O32-、Fe、Fe2+、NH4+等)作为硝酸盐氮还原的电子供体完成微生物新陈代谢,将缺少有机碳源的硝酸盐氮污染的水中的NO3–N还原为N2。在耦合生物电子载体中,碱度供体均匀分布可以有效平衡脱氮过程的酸碱度,实现生物活性的自维持;多元电子供体的引入,可以有效促进微生物的代谢偶联作用,实现脱氮反应过程的自激活。
硫自养反硝化滤池滤料,应该很多朋友不了解这个产品,普通的反硝化滤池滤料为石英砂滤料和陶粒滤料,近两年新型研发出来的硫自养滤料。反硝化滤池无需投加有机碳源,可有效避免由于水质波动带来的COD二次污染问题同时,脱氮基于自养反硝化原理,污泥产率低,可有效降低反冲洗频次,实现节能。另外,相较于有机碳源作为电子供体,固体缓释型电子供体更为廉价,并易于储藏和运输。硫自养滤料整体上可显著降低深度反硝化工段的运行成本。
硫自养反硝化中硫形态的硫自养反硝化多应用于深度脱氮领域,硫代硫酸钠
Na2S2O3为电子供体具有溶解度高、传质好、成本低等优点,且对系统的pH影响较小,被大量研究证明是效果好的硫源,以Na2S2O3为硫源的反硝化方程式如下所示。
0.844S2O32-+NO3-+0.347CO2+0.086HCO3-+0.0086NH4++0.434H2O→
1.689SO42-+0.500N2+0.086C5H7O2N+0.697H+
硫自养反硝化的优点
1、无需投加碳源,节省了碳源的消耗;
2、填料自身消耗,无需更换,直接投加;
3、无碳源穿透的问题,防止出水COD升高!
硫自养反硝化反应多为产酸反应,反应过程中pH变化较大,而微生物的适宜pH区间较小,pH的变化会对系统的脱氮效率产生较大的影响。车轩等研究发现脱氮硫杆菌生长的适pH为6.8~7.0,李天昕等发现S/石灰石滤柱在pH=7.0时系统有大的TN去除率,Liu等研究发现在pH小于6.7时,系统的比反硝化速率会快速下降。因此,硫自养反硝化的适pH值约为7.0。
硫自养反硝化工艺的优势
依据S/Fe 自养反硝化原理,研发出自养反硝化滤料,实现了协同自养反硝化去除硝酸盐氮及磷酸盐的技术,形成一套更高出水标准和低消耗的保障工艺。 通过滤料的复配和筛选(S/Fe比例、直径等),降低硫酸盐生成量和使其适用更宽泛的pH空间,确保了系统的稳定运行。
1、使用滤料替代碳源投加,避免药剂燃爆风险。
2、避免传统碳源投加过量导致的穿透现象,杜绝出水COD升高的问题。
3、滤料消耗费用小于碳源投加费用。
4、污泥产率低,降低反冲洗周期,每周反洗1-2次。
5、具备一定的同步脱氮除磷能力。
6、无需曝气,节省占地面积。
异养反硝化需要投加有机碳源,这不仅增加了处理费用而且还可能带来二次污染。 本文采用曝气生物滤池和硫/陶粒自养反硝化滤池的新组合工艺进行脱氮。研究了温度对于曝气生物滤池和硫自养反硝化滤池脱氮的影响。而对碱度(以NaHCO3的形式)、空床接触时间等也进行了研究。研究表明,当温度在15℃以上时,曝气生物滤池对氨氮的去除率在95%以上。但当温度降到10℃、5℃时,氨氮去除率下降到65% -80%、55% - 70%。当进水的水温在5℃-35℃,溶解氧在2-4 mg/L时,硝酸盐氮的去除率在98%以上。低温和高浓度的溶解氧并没有降低硝酸盐氮的去除率。当温度在15℃以上时,由于较高的氨氮和硝酸盐氮的去除率,曝气生物滤池和硫自养反硝化(SCAD)滤池对总氮的去除率在90%以上。但在低温条件下,氨氮去除率的降低是影响总氮去除的一个限制因素。SCAD滤池出水的COD、浊度、UV254的数值都进水。硫酸根离子的产量和硝酸盐氮的降解量之比在7.6-9.5之间,比理论值稍高。在SCAD的出水中,硫酸根离子的浓度随着水温的降低而有升高的趋势。 较高的NaHCO3投加量可以提高硝酸盐氮的去除速率,但是400 mg/L的NaHCO3意味着碱度?饱和‘的发生。在理论碱度的投加量下,硝酸盐氮的去除率在98%以上,但是出水中有亚硝酸盐氮的积累。空床接触时间对氨氮的去除率的影响比硝酸盐氮高,以至于总氮的去除率在较低的空床接触时间下开始下降。 在低温高溶解氧条件下,硝酸盐氮的去除率依然很高,这与传统的低温高溶解氧抑制自养反硝化的观点相矛盾。这个组合工艺对于寒冷地区的生物脱氮具有重要意义。