银川镁合金板型号az31b镁合金板材
-
¥120.00
变形镁合金AZ31B,具有较高的抗振能力和吸热性能,因而是制造飞机轮毂的理想材料。镁合金AZ31B在汽油、煤油和润滑油中很稳定,适于制造发动机齿轮机匣、油泵和油管,又因在旋转和往复运动中产生的惯性力较小而被用来制造摇臂,舱门和舵面等活动零件。民用机和飞机、尤其是轰炸机广泛使用镁合金制品。的美国B-52轰炸机的机身部分就使用了镁合金板材635公斤,挤压件90公斤,铸件超过200公斤。镁合金也用于导弹和卫星上的一些部件,如中国“”地空导弹的仪表舱、尾舱和发动机支架等都使用了镁合金。
AZ31B镁合金在汽车上的应用也很广泛。如离合器壳体、阀盖、变速箱体气缸盖、空调机外壳等。方向盘、转向支架、刹车支架等。为了在汽车受到撞击后提高吸收冲击力和轻量化,在方向盘和坐椅上使用镁合金。根据有关研究,汽车所用燃料的60%是消耗于汽车自重,汽车自重每减轻10%,其燃油效率可提高5%以上;汽车自重每降低100 kg,每百公里油耗可减少0.7 L左右,每节约1 L燃料可减少CO2排放2.5 g,年排放量减少30%以上。所以减轻汽车重量对环境和能源的影响非常大,汽车的轻量化成必然趋
镁合金是实际应用中质量轻的金属结构材料,同时,镁合金具有比强度和比刚度高、弹性模量大、生物相容性好、导热导电性好、电磁屏蔽能力强和阻尼减震性能好等优点,被广泛应用于航空航天、交通运输、、装备制造和3C电子等领域,被誉为“二十一世纪具发展前景的绿色工程材料”。
压下制度是板材轧制制度核心的内容,直接关系着生产效率和产品质量。一般来说,镁合金的压下量分配主要取决于各种合金的加热温度及此温区内合金的强度和塑性指标、轧制速度、轧辊大安全负荷、轧辊直径大小等因素。道次压下量和总变形量均对镁合金轧制板材的组织和性能有很大影响。增大道次压下量和总变形量有利于细化晶粒,提高力学性能。但当压下量超过其临界变形程度时,在轧板表面或边部容易出现开裂现象。若轧制前板材内具有织构,则坯料的厚度对轧板的微观组织和力学性能也会造成一定的影响。其原因在于当坯料厚度不同时,轧板法向与轧制合力之间的火角也会有所差异,使各种塑性变形机制的作用发生改变。
镁合金具有密度小、比强度和比刚度高、导电和导热性能好、无磁性、屏蔽性好和等特点,同时也具有易于回收、可再生利用和环境友好等性能,因而镁合金材料被誉为“21世纪的绿色结构材料”,在、航空航天、交通工具、机械电子及3C电子产品等领域具有广阔的应用前景[1].
按照加工方法,镁合金可以分为铸造镁合金和变形镁合金.铸造镁合金与变形镁合金相比,其制备技术相对成熟,但产品力学性能明显比变形镁合金差,产品尺寸、形状存在一定的限制,且容易产生组织缺陷,导致应用范围受到很大的限制.因此,变形镁合金的研究和生产已经成为镁工业发展的一个重要方向.
近年来,镁合金板带材的生产和研究成为镁合金行业主要的热点.但与常用的钢铁、铜、铝等金属相比,镁合金板带材在合号、生产技术、工业产量、市场应用、研究开发和工艺数据等方面存在较大差距,还处于规模开发与市场应用的初级阶段[2].
制约镁合金板材发展的因素很多,主要的是镁的滑移系少,室温塑性变形能力差,只有温度升高到220 ℃以上时,镁合金才能获得较好的变形能力.因此,镁合金热加工过程中往往需要进行多次加热.与挤压件和锻件生产相比,镁板的轧制难度更大,主要体现在轧制过程中板材易产生裂纹、产品存在各向异性、道次压下量小、生产效率低、成品率低等方面,但以轧制方式生产板材产品是镁合金大规模开发和应用的重要标志.
镁合金热轧开坯、温冷轧成卷技术的试验性轧制早出现在前苏联.1970―1974年,前苏联轻合金研究院曾研究了轧制镁合金带卷的可能性.开发了250 mm×850 mm的大规格铸造工艺,并在2 800 mm四辊轧机上经过11~15道次,热轧到6.0~7.5 mm厚,然后在1 200 mm四辊可逆温冷轧机上进行了带卷轧制试验.带卷加热到380~400 ℃,将一些低合金化的镁合金带材卷轧制到2.0 mm的厚度,甚至轧制到1.2 mm.
我国镁合金材料产业在稀土镁轻质结构合金材料、高强高导热镁合金材料、高强高导电镁合金材料、强镁合金材料等11个方面的未来市场需求前景。面向2030年和2035年的阶段性发展规划,本文从提高自主创新能力、优化资源配置、加强企业合作力度、构建完善的镁合金材料整体研究体系、完善平台建设等方面提出了促进我国镁合金材料产业可持续发展的相关战略。后,从注重研究体系的构建、优化产业发展格局、构建高质产业、完善配套政策体系、构建精尖人才体系等方面提出了对策建议,以期满足国民经济、国家重大工程和社会可持续发展对镁合金材料的需求。